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Abstract

In much the same way as the Global Positioning System (GPS) was initially intended as a

navigation system for military use, current Wireless Sensor Networks (WSNs) tend to be dedicated

to a particular purpose and for the exclusive use of a particular organization. Thus, WSN security has

focused in large part on encryption and authentication schemes to protect data during transmission

and ensure only authorized users are granted network access. However, just as GPS has become

an indispensable resource for military and civilian use, it is expected that WSNs will become an

essential sensing resource that must support a vast number of users.

This will require security measures mirroring the security concepts of typical secured computer

networks in which authenticated users are only authorized to access certain data within the system.

WSNs will need to similarly restrict access to data, enforcing security policies to protect data within

WSNs, even though WSN nodes face severe power, memory, computational, and communication

limitations. To date, WSN security has largely been based on encryption and authentication schemes.

The WSN Authorization Specification Language (WASL), a mechanism–independent compos-

able WSN policy language, takes into account the severe resource constraints of WSN nodes. The

language is itself specified and implemented with a JavaCCTM grammar–parser for security policy

input and a policy compiler built using JavaTM code.

WASL is capable of specifying arbitrary and composable security policies that span and in-

tegrate multiple WSN policies. The construction, hybridization, and composition of well–known

models is demonstrated to preserve security, sustaining confidentiality in Bell–LaPadula’s model,

integrity in Biba’s strict integrity model, and conflict of interest avoidance in the Chinese Wall.

Using WASL, a multi–level security policy for a 1000 node network requires only 66 bytes

of memory per node using a näıve data compression scheme. A policy of this size can reasonably

be distributed throughout a WSN periodically. The compilation of a variety of policies and policy

compositions are shown to be feasible using a notebook–class computer not unlike that expected to

be performing typical WSN management responsibilities.

A system implementing WASL is secure as defined by the security model. It is also be more

flexible in that a policy file update is all that is required to modify the accesses permitted any given

user. The policy can be additionally modified to permit inter–network accesses with no more impact

on the WSN nodes than any other policy update.
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Composable Distributed Access Control and Integrity Policies for

Query-Based Wireless Sensor Networks

I. Introduction

The US military is rapidly incorporating wireless technologies into weapon systems to streamline

operations. One such example is radio frequency identification (RFID) tags attached to shipped

parts to improve the planning, tracking, and management of supplies and equipment. Another is the

use of unmanned aerial vehicles (UAVs) to enhance surveillance, communication, and even weapon–

delivery options. Wireless sensor networks (WSNs) are a rapidly–changing technology area that,

in a sense, bridges between RFIDs and UAVs, providing a potentially–mobile, dynamic network of

tiny sensor/communicator devices that can increase the efficiency and effectiveness of the US armed

forces. These devices also introduce new vulnerabilities and challenges, however, some of which are

described in the following scenarios.

1.1 Scenarios Identifying a Technology Gap

Suppose a mountainous area is a known haven for terrorists. To assist in identifying their

specific locations and movements, thousands of microsensors are dispersed in the region. These

nodes, or motes, self–organize into a network to support the mission.

While all motes are the same, the network organizes itself such that some fill the role of

data provider while others are data integrators. The providers sense events in the environment

and forward this data to other motes. The integrators collect this raw data and develop a concise

representation of events that have occurred within the sub–region that is in close proximity to

that node. The integrators determine how many movements have occurred as well as the origin

and destination of each of these movements. Integrators also forward their information to other

motes so that eventually the integrators share sub–regional information to build a complete regional

representation. A gateway computer administers the network, but even this computer cannot directly

access all the motes. Additionally, the gateway is not always available to respond when the network

receives a query.

Properly equipped military vehicles that pass near the network are permitted to perform queries

to access information in the network. Only certain vehicles’ communications and computer systems

have the ability (i.e., the proper identity) to modify the network with information such as software

updates and to query individual motes regarding the particular data collected.

Suppose that after the WSN has been deployed, several countries are added to the coalition

of partners working in the region. To facilitate information sharing and to improve the coalition’s

1



responsiveness to opportunities for action, certain partners are provided user identifiers and authen-

tication protocols that permit them to query the WSN for information. The access protocols are

identical for all countries, but each is authorized a unique set of authorizations in the system. The

security policy within the WSN is all that requires an update to permit the new accesses.

Over time the need for information sharing with one or more of the coalition partners is likely

to change. Further updates of the security policy within the WSN will permit the addition or removal

of permissions as appropriate.

This scenario highlights the need for a WSN that can be responsive to changes in users’ status.

Authentication is assumed and forms the basis of security policy enforcement, but having the ability

to quickly and easily update the security policy provides an indispensable level of flexibility for the

WSN administrator.

In another scenario, suppose a WSN called the Geo–Weather Sensor Net (GWSN) is deployed

by some university across some geographic region. The motes are equipped with sensors for detecting

seismic activity and current weather conditions; some motes have the responsibility for aggregating

data to provide a historical account. Because this network is deployed for research purposes, a variety

of research groups at the university collaborate to develop a common interface to the network.

GWSN consists of 5,000 motes with one notebook computer that provides network manage-

ment. The notebook computer is not always available and, because the region is accessible to

researchers, motes may be directly queried by properly configured wireless communication devices.

Three groups of researchers require access to GWSN, each group has its own identity but all

use the same communication protocols and interfaces. Each group is limited with respect to the

information it may retrieve from the network. Members of the geology research group have access

only to current and historical seismic data while the meteorology researchers’ access is limited to

current and historical temperature and humidity data. Computer engineering researchers control

the gateway and may access diagnostic information and any current sensor readings.

The university’s departments occasionally participate in joint research or academically compet-

itive ventures. These activities require sharing access procedures and codes—authorizations—with

groups and individuals outside the existing set of users. New accesses generally follow the groupings

previously defined with the addition of geology, meteorology, or computer engineering users. But

the new GWSN users have additional limitations that must be enforced.

Messaging protocols in GWSN include a means for authentication; each user has a unique code

that is sent with messages to confirm a user’s identity (including the user’s research group). En-

cryption is required for each transmission to hide this identity code from eavesdroppers. Changing

2



code schemes requires significant reprogramming of each mote and reprogramming with any regu-

larity is difficult primarily due to the number of motes as each must be updated individually. The

reprogramming task is even more challenging because some motes are normally beyond the range of

the gateway.

To provide appropriate accesses for geology researchers from another university, the GWSN

access policy is modified to reflect a new geology sub–group. The authorizations permit members

of the subgroup to authenticate just as any other geology student, but with a few added limitations

as defined by the host university. The new policy is transmitted throughout the network and the

new accesses are permitted. These new accesses can be modified or terminated at any time without

requiring authentication or encryption protocols.

This example highlights the need for a means to modify a WSN’s security policy according

to an independent authorization scheme rather than relying on a query language, authentication

scheme, and encryption protocol to perform policy–management functions.

1.2 Background

The above scenarios identify some of the issues that must be addressed in a secure wireless

environment. The proverbial man on the street may also be affected by these issues as wireless devices

and associated networks become a part of everyday life. Keys to offices and office buildings use

wireless entry authorizations; libraries use small encoded devices that wirelessly report information

about books; remote controls for devices such as garage doors, stereos, lights, environmental controls,

and other household devices are in nearly every American household; wireless internet connections

can be found in homes, businesses, hotels, restaurants, and now encompass entire cities; and the list

could go on.

As miniaturized devices with wireless technologies become more complex and pervasive as well

as less expensive, there are new opportunities for sensor–dependent solutions. The technologically

young WSN is showing promise to meet many of these challenges. As described in the above scenarios,

a WSN typically consists of a large number of sensors (possibly hundreds or more) in a relatively

small area that broadcast data amongst themselves and may forward data to some gateway linking

them to the outside world. WSN devices can be deployed densely enough to develop a complete

picture of an area and are becoming small enough so as to be indistinguishable from their physical

environment, thereby blending into the background.

This research is not limited to the above classical descriptions of WSNs [ZG04; RSZ04], but can

be extended to at least two other classes of wireless networks that include sensors: passive networks

such those in which RFID devices reside and active networks such as those in which UAVs might

3



be involved. While WSNs are limited to hundreds of kilobytes of memory and processing power less

than ten million of instructions per second (MIPS), RFID tags are typically less capable with several

thousand bytes of memory and just enough processing power to, for example, program the device

with the intended data. Some RFID tags have no power supplies, relying on the querying agent to

provide it via RF signals. UAV’s have memory and computational limitations, but at a completely

different scale; required communications may exceed 250 Mbps (250× 220 bits per second) [DSB04]

while powerful computing capabilities are necessary for proper air and ground control and to perform

assigned tasks.

To facilitate interactions among WSNs and RFID systems, UAVs, or other wireless systems,

this research develops a distributed and composable access control scheme that ensures a request

for data is from an authorized consumer. If an unauthorized consumer is given information, confi-

dentiality has been violated. Or suppose access is properly requested and granted for an authorized

information source and consumer; can the integrity requirements of both be met? On a larger scale,

how do these questions apply within a WSN? These questions implicitly assume there is a policy

describing what authorized means and what integrity is. They also imply a query–response system is

used or at least available. While authorization and integrity do not address questions about passive

information stealing by entities eavesdropping on communications, these threats can be addressed

through encryption or information hiding schemes.

Figure 1 illustrates some of the challenges related to these objectives. Consider three systems

X, Y, and Z interacting with three wireless networks A, B, and C. Each wireless network has some

number of sensors wirelessly linked to some number of other sensors and with a connection to the

“outside world” established through some gateway. Each WSN operates with a unique policy that

includes both distributed access control and integrity constraints. WSN A operates under access

and integrity policy A ′, WSN B uses policy B ′, and WSN C applies policy C ′. Different computer

systems and/or networks (e.g., X, Y, and Z) require access to these wireless networks but must

comply with the given policies. Interaction among the WSNs may also be necessary, as indicated

by the wireless communication lightning bolt between a sensor under Policy A ′ and a sensor under

Policy B ′; policy translation or inherent compatibility is required to allow this type of inter–network

communication.

1.3 Purpose

This research has three objectives. First, a language is necessary to represent WSN security

policies and provide for their composition; this language must be sufficiently expressive to model

a variety of security policies and their compositions. The language developed is called the WSN
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Figure 1: Sample WSN Environment

Authorization Specification Language (WASL). Second, policy composition must be understood and

enforceable using this language. Third, the individual and composed policies must be shown to

support a specified notion of security as asserted. All three must be defined and structured such

that they are relevant to the domain of WSN query–based networks.

A key element in this work is the characteristic of transferring data from one node to another

primarily as a response to a query. In the type of network in which any node may receive a query,

data transfer permissions are handled either through an arbiter or by the individual node answering

the query. The arbiter option is undesirable for a WSN due to severe resource constraints, so the

individual node must handle permissions for received queries and the policy–management system

must be scaled to account for the capabilities of a mote.

With respect to general WSN security issues, the objectives assume authentication including

key management or message protocols; they do not address issues of data freshness. While the

security properties of data confidentiality and integrity are addressed, security of data during trans-

mission is assumed. Availability is tangentially–affected in that a security policy identifies the actions

permitted (or accessible to) a given user.
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The following identifies requirements for the policy system’s language and describes the ele-

ments necessary for the composition of policies in this domain. The need for proofs in describing

the security of systems implementing the language and composition approach is also presented.

Objective 1: Develop the Language. WASL is the core of this research and it must satisfy

several requirements. This language must represent security policies for WSNs and be capable of

representing arbitrary policies. While policy specifications may contain a large amount of data,

the resulting authorizations of the policy are all that is required at a mote and, therefore, must be

suitable for extraction, possible compression, and transmission throughout the WSN.

The language and its associated compiler must support complete delineation of system–permitted

authorizations because, again, the motes require this information. Other types of authorizations also

must be available as, specifically, mandatory and discretionary authorizations are used in well–known

and mature security models.

WASL must additionally provide for the expression of facts regarding relationships among

subjects (users) and data objects and between either of these and their respective security levels.

These associations are modeled by some researchers as groupings of entities that can also then be

referenced by group identifier. To enhance the ability of a security administrator to define and

modify a policy, WASL provides rules that make use of stated facts to derive authorizations.

The simultaneous enforcement of multiple partially ordered security levels is a necessary feature

for some individual policies and for policy composition. Additionally, role–based security protocols

abound and are an element WASL supports.

Objective 2: Define Secure Composition. Maintaining the security of a system after policy

composition is vital for a robust solution. But with the many definitions that identify different

qualities of a “secure composition,” the attributes needed for query–based WSNs must be selected.

Composition must be demonstrated to be feasible for a variety of policy types and be shown to

maintain the specified notion of security.

Objective 3: Preserve Security When Using the Language. The policy types used to demon-

strate WASL are axiomatic systems, lending themselves to proofs of security. These proofs provide

the desired assurance of security. Proofs must be extended to policy specifications expressed in

WASL. Similarly, compositions both in theory and as implemented in WASL must be proven to

maintain security.
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1.4 Summary

In response to the aforementioned technology gap, this research accomplishes the following:

• It develops a new language for expressing confidentiality and integrity policies for

WSNs and demonstrates its implementation.

• It defines and demonstrates a security–preserving policy composition approach using

the new language.

• It uses definitions of security to show that WASL sustains security for individual

policies and for composition.

WASL is a means for expressing security policies that can be proven to sustain security accord-

ing to a given definition. These policies can be composed with others such that the individual policy

systems, with subjects permitted and denied certain accesses to particular data within a system,

remain undisturbed while additional permissions for inter–system accesses are permitted. These

new accesses are shown to be consistent with the defined security definitions as well.

Examples are provided to demonstrate policy specification and composition and the implemen-

tation of this new language, complete with a compiler, is also described. Compilation and composi-

tion times are discussed to demonstrate the feasibility of the proposal with results identifying both

the capabilities of the approach and its utility for implementation within a WSN.

Background information on technical areas related to this research is in Chapter II and includes

overviews of WSNs, computer security, and security policy composition. The WASL language is de-

scribed in detail in Chapter III, including definitions of its grammar and statements and discussions

of the compilation and composition of encoded policies. Examples of WASL–encoded policies consis-

tent with Bell–LaPadula’s security model, Biba’s strict integrity model, and the Chinese Wall model

are in Chapter IV, including specifications of hybrid policies. Chapter V defines policy composition

and provides examples while Chapter VI supplies the formalization of the policy models presented

and shows that the demonstrated policy programs in WASL sustain security as defined by those

models. Chapter VII identifies the contributions of this research and follow–on efforts to extend the

accomplishments identified herein.
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II. Technical Area Review

This chapter presents four important elements of this research. Section 2.1 is an introduction

to wireless sensor networks while Section 2.2 presents general information regarding computer

security and security policy composition. Section 2.3 provides an overview of methods for expressing

and composing security policies. A review of related research is included in Section 2.4.

2.1 Wireless Sensor Networks

WSNs [ZG04; RSZ04] sense phenomenon and transmit collected data. They are typically

densely deployed to allow short–distance communication among nodes while providing many inde-

pendent observations within a region. Thus, behavior in the region over time as it relates to the

sensed characteristics can be determined. The capabilities and limitations of the sensor within a

node fall outside the scope of this research and are not discussed.

The WSNs topology is assumed to be ad hoc and a given node cannot be assumed to be

active at any specified time due to device failure, environmental factors, or the transmission protocol

itself. Each node may, however, have the ability to identify its location and that of its nearest

neighbors. Location may be geographically absolute as determined by the global positioning system

(GPS) or some relative measurement as determined by using a factor such as transmission delay

or hop distance. This dynamic topology development helps the network adapt to unpredictable

environments when a given node is not responsive. Additionally, a gateway device provides network

administration and a link between the WSN and an external network. This allows WSN nodes to

perform sensing and communications within the WSN independent of external network requirements.

The rest of this chapter discusses the WSN’s limitations in Section 2.1.1, communications in

Section 2.1.2, and the nature of a query–based network in Section 2.1.3. A brief overview of WSN

security issues is in Section 2.1.4 with the description of an operating system designed for WSNs

following in Section 2.1.5.

2.1.1 Limitations. Most limitations inherent to the devices in a WSN can be linked to

their physical size. For example, power, computational capacity, and communication capabilities are

ultimately all constrained because the the nodes are very small devices.

The power supply of each unit is constrained to a battery or other small power source that

supports all the sensing, computation, and communication activities of the device. Communications

is one of the most power–intensive operation performed by the device [PSSC04], placing an upper

limit on the lifetime of any given node. WSNs are designed to withstand the periodic loss of nodes

throughout the network, in part, because power failure is a common cause of WSN device failure.

Any reduction of communications may extend the lifetime of a node through power savings.
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The memory and computational capacity of a mote are also severely limited because of size

and power. Complex computational algorithms and manipulations of large datasets are untenable

for a WSN node.

An example of the typical computation and communication capabilities and limitations is the

MICA2 Dot Mote [Cro07]. The MICA2 Mote weighs 18 g and operates on two “AA” batteries. It

hosts the TinyOS operating system on an ATmega128L 8–bit processor running at 8 MHz with 4

KB RAM and 128 KB flash RAM for code. These specifications mean most tasks, including policy

management, reside in code that is on the order of hundreds of lines of code in length.

The above limitations on node power, memory, computations, and, by implication, communi-

cations significantly constrain the capabilities of individual nodes. Just as for any other task handled

by the node, a security policy enforcement mechanism must be designed to use resources sparingly

if this capability is to be implemented in a node.

2.1.2 Communication. Radio links are the most common communication method among

nodes in a WSN. Each node communicates with its close neighbors while communication to far

nodes is accomplished only after the message has been transmitted through a series of one or more

hops from node to node. Every node within range of the transmitting node is a potential receiver of

the transmitted information.

Similar to other types of networks, WSNs layer communication protocols to effectively move

data from one node to another [SOBAC04].

• The application layer provides a means of identifying nodes by location or capability and

prepares the message for transfer.

• Transport layer mechanisms add error control to the data and regulate communication flow

while preparing the message for routing.

• Network layer protocols perform the routing within the WSN.

• The data link layer includes medium access control (MAC—providing the infrastructure for

multi-hop network management and for ensuring fair sharing of communication resources

within the WSN), error control, and data frame detection/data stream multiplexing.

• The physical layer transmits or receives data streams.

Policy mechanisms are implemented in the data link layer where they function as a filter to

prevent unauthorized communications. Policy enforcement mechanisms may also be in the applica-

tion layer to permit certain actions requested by a querying agent while denying others. Whatever
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the final implementation, policy enforcement must prevent transmissions in response to queries when

the querying agent is not authorized per the established policy.

In the process of carrying out the responsibilities of the network, nodes must communicate with

each other. Communications can be event–driven or query–driven, the strengths of each explored

in [BE02]. Consider an event–driven WSN with the task of tracking objects through a WSN field.

A node must sense pertinent events, process them appropriately, and transmit coordinates, timing,

and other information to its neighbors. The event of sensing a moving object serves as the trigger

for computation and communication.

WSN activity may alternatively be in response to a query, perhaps from one mote to another,

but possibly from an external entity. One could define a query as simply another type of event. This

query–driven paradigm is explored next.

2.1.3 Query–Based Network. There are three primary categories of queries in a sensor

network [EN03]: single source queries require only one node’s information in response, non–aggregate

queries require knowledge about multiple sensors but not necessarily information from multiple

sensors, and aggregate queries require information from multiple sensors consolidated into a single

response. Examples of the three query types are, respectively: Did node X sense event E? Which

nodes could have sensed event E? What was the average reading of all sensors when event E occurred?

A query from any of these categories may be presented to a node at any time, particularly if the

query is coming from an entity outside the network.

Another way to partition queries, independent of the aforementioned categories, is by consid-

ering the time frame of the desired answer [BGS00]. Historical queries look to the past, snapshot

queries consider the current state of the network, and long–running queries ask a question now that

may return many answers in the future or a single answer much later than the query’s submission.

An alternative view of queries considers them in four classes [CKP03]: entity–based or value–

based and aggregate or non–aggregate. A query labeled as an aggregate requires some level of

inter–node communications to determine the answer while a non–aggregate requires a single node’s

data. Orthogonal to the aggregate and non–aggregate types are the value–based versus entity–based

categories. The former returns a single answer whereas the latter returns sets of values.

The query categorization method selected depends on the application, but these varied de-

scriptions, summarized in Table 1, point out some important concepts to consider for a query–based

network. When a query is received by the network, a node might require answers to the following

questions to determine the appropriate response, with an emphasis on security (security is discussed

in Sections 2.1.4 and 2.2).
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Table 1: Query Classifications

Distinguishing Factor(s) Categories

Nodes required to answer a query Single node | multiple nodes
Type of data requested Data from the nodes, | data about the nodes
Time frame of the desired answer Historical | current snapshot | periodic, future
Data type and scope Entity–based non–aggregate | value–based non–aggregate,

entity–based aggregate | value–based aggregate

• What is the protection (or perhaps integrity) level of the querying agent?

• How many nodes’ data are required by the query?

• What are the protection (integrity) levels of each of the affected nodes?

• What is the protection (integrity) level of the answer to the query?

• Does the query require retransmission to arrive at the node with the answer? Are node privi-

leges such that retransmissions will not fail at some point due to security?

• Does the answer traverse a number of nodes to arrive at the destination? Is the answer visible

to intermediate nodes and/or are intermediate nodes authorized to see the answer?

The purpose of each query is to seek an answer regarding events that occur within the

WSN [BE02]. The policy controlling reception of and responses to queries may need to specify

whether a receiving node should respond to queries or which single node with the answer to the

query should respond. The answer may depend on whether the query originates from within or from

outside the network.

Security issues are key challenges for establishing communications among nodes and the queries

presented to them. Future WSNs may permit a node to respond directly to a query from an extra–

WSN node and, if so, security protections will have to account for these nodes as well as all the

intra–WSN nodes. The next sections discuss the issues and protocols that address those issues.

2.1.4 Security Issues. WSN characteristics lead to obvious and perhaps not–so–obvious

vulnerabilities [CP03; AUJP04]. The following are a few of the many areas, some of which are just

now beginning to be investigated.

Since WSN nodes might reside in an area not physically controlled by the user, a malicious user

might locate a sensor and alter its performance. Such hijacking could result in improper data being

transmitted or could lead to unauthorized access to information in the WSN. The adversary might

simply add an unauthorized node to the network for various active or passive malicious attacks.
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Most WSNs broadcast data. Simply monitoring data broadcasts may be all an adversary needs

to do to capture the state of the WSN or the information being transmitted unless encryption is used.

With encryption the task becomes more difficult for the malicious user, but significant resources must

be expended to perform encryption at each node.

Data that resides in a given node or collectively on the network effectively has no protection

at all if an adversary can capture it with a simple query of the network. Such a query may be made

indirectly, as the information gathered by the WSN is transmitted to authorized users directly or

via the connection of the gateway to the Internet or some other generally–accessible network. If an

adversary understands enough about the network’s behavior, traffic patterns might reveal important

information about the network. Therefore, traffic analysis is also a security issue.

Other issues include those identified in the following questions. How does the network deal

with a malicious node that either fails to forward information or forwards incorrect information?

How is the threat of a compromised WSN–wide encryption key identified and mitigated? How do

the nodes maintain all the cryptographic information required if point–to–point keys are employed?

Many questions are answered by establishing protocols for data security. One approach sepa-

rates the concerns of data security from broadcast authentication. Data security has four require-

ments [PSW+01] that closely parallel the generic computer security issues in Section 2.2, but the

definitions for confidentiality and integrity are much weaker below.

Data Confidentiality protocols typically employ some level of encryption to provide secure com-

munication of data to approved nodes. This includes semantic security by which an eaves-

dropper cannot discern anything about or recognize a message even if the same message is

transmitted multiple times.

Data Authentication ensures a message comes from an authorized source and the source is the

originator of that message. More detail on authentication follows.

Data Integrity ensures data is unaltered during transmission and verified with data authentication.

Data Freshness describes the ordering and currency of data. Strong freshness is a total ordering

of messages as well as the time delay of transmission and weak freshness ensures only proper

ordering.

Symmetric and asymmetric approaches to data authentication have been proposed [PSW+01;

Lam79; GR97; Roh99; PCST01]. In symmetric authentication the sender and receiver share a key

that enables the receiver to verify the sender’s identity. Asymmetric authentication requires the

transmission of a digital signature of significant size. A conventional symmetric authorization key

sent with each message is cost prohibitive for a sensor network, much less the asymmetric signature;
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each approach consumes too much bandwidth, memory, or computational power for a typical sensor

node [PSW+01]. While authorizing manipulation of network data is central to discussions below,

prior authentication is presumed herein.

This research has developed a solution to the security questions that arise after a node has

received a request from an authenticated source. It answers the question, “What are the requestor’s

privileges based on security classification(s) and access rules possibly related to those classifications?”

Discussions about authentication focus on identifying users are who they claim to be; but that

is only part of security. Other components include the areas of confidentiality and integrity that are

investigated in Section 2.2.

2.1.5 TinyOS. A specialized operating system (OS) called TinyOS has been developed

at the University of California, Berkeley [HSW+00], to support a family of WSN motes. It was

designed specifically to meet the power, memory, and processing limitations of small, untethered

sensor nodes.

TinyOS has a layered architecture, where down refers to those layers closer to the hardware

and up to those further away. It is an event–driven architecture where three types of activities are

performed: tasks, commands, and events. In general, events signal upward while commands are

issued downward with tasks providing the bulk of required computations. This layered architecture

supports component–based construction of the desired system.

An extension to the C programming language, called nesC provides a means of building compo-

nents that meet the unique requirements of TinyOS [GLvB+03; GLCB03] and TinyOS applications.

While conforming to the TinyOS concept of components, nesC does not support dynamic memory

allocation, but facilitates whole–program analysis. This results in simpler and more accurate safety

analysis, provides optimization of the entire program (as opposed to single applications), and en-

tirely eliminates the overhead of memory allocation schemes. Each component created for TinyOS

is composed of event handlers, commands, and/or tasks.

Tasks are data manipulation routines that constitute the primary work of the node. Each is

completed in the order it is placed on the task scheduler’s list. They signal higher level events or

call lower level commands, and each must be completed prior to beginning another task. Tasks can

be interrupted by events.

Commands are calls that may post tasks on the task scheduler or invoke lower level commands.

Each returns a “success” or “failure” status to the caller without significant delay, so it cannot wait

long for subordinate commands to terminate.
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The lowest level events are essentially hardware interrupts that are handled immediately by

the processor. Events are permitted to call higher-level events or commands and may result in the

addition of tasks to the schedule. They can be interrupted by higher-priority events.

Each of these three activities is limited both in execution and in the actions that can be invoked.

These limitations provide a great deal of protection against long running tasks, but cannot eliminate

them.

TOSSIM is a useful testing environment when nodes are not available. It simulates TinyOS at

the bit level [LL03]. Every interrupt is simulated, every line of application code is run, and interrupt

timing is precise when actual TinyOS code is run. It is limited, however, in that each piece of code

runs sequentially with the appearance of instantaneous execution. That is to say, it cannot detect

faults that might occur in real nodes due to colliding interrupts or task preemption during execution.

Among the various additions to TinyOS is a security suite called TinySec [KSW04]. The goals

of TinySec include improvements in access control, integrity, and confidentiality. At its core, Tiny-

Sec uses a shared key to encrypt and decrypt each message sent and received. Failure to use the

same key results in message rejection. It can also add sequencing or a time–related key within a

symmetric authorization protocol to provide an additional low–overhead data security mechanism.

Such a mechanism may prevent eavesdroppers from understanding or recognizing broadcast infor-

mation that is repeatedly transmitted [PSW+01]. This mechanism contributes to security during

transmission and is a primary component of an authorization scheme. It does not, however, address

the requirements of policy implementation or policy composition.

2.2 Computer Security

This section provides fundamental information in computer security, particularly as it relates

to access control and integrity, terms that are defined below. Discussed herein are central principles

of security along with models reflecting some of the various aspects of security. Formalisms used for

evaluating security security principles are introduced along with the models, when applicable.

To whom should a system allow access and upon what criteria is this access based? Once access

has been granted, what privileges should be permitted? How are these permissions expressed? How

are permissions verified? These questions and the answers to each define computer security for a

given system.

The context of an access request (i.e., the history of accesses) may matter a great deal. Ad-

ditionally, the role of a subject, discussed as the “user” above and defined herein as an entity that

can act with respect to the protection system, may be the primary consideration regarding access.
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The rights of a subject may change as the actor moves into and out of particular roles. Access may

alternatively be granted solely based upon a subject’s identity with each subject possessing specific

capabilities because of some unique characteristic.

Before presenting details of specific security principles, the computer security foundation is laid

in Section 2.2.1. The most relevant of the overarching principles are confidentiality and integrity,

respectively addressed in Sections 2.2.2 and 2.2.3. The Chinese Wall security model in Section 2.2.4

illustrates how some of the fundamental principles are combined in a security system.

2.2.1 Fundamentals. Computer security addresses three primary components [Bis03]:

confidentiality, integrity, and availability. Confidentiality and integrity are discussed in more depth

below, as they are central to the purposes of this research.

Availability means that authorized subjects can access data, information, or resources on

demand. The failure of a system to provide the desired availability may result from natural (e.g.,

hardware failing) or hostile causes (e.g., denial of service (DOS) attacks). The inability of the

system to perform as intended is considered a security issue, particularly as a result of a hostile

agent’s actions.

DOS attacks come in many forms. Flooding a communication channel or submitting an over-

whelming number of data requests are two examples of this type of attack. For WSNs another

plausible DOS attack includes any actions that intentionally cause excessive transmissions over a

short period of time, resulting in power consumption that shortens the life span of the nodes. Thus,

the prevention of unnecessary communications is a primary goal of a WSN security system.

The reliability of a system also plays a role in availability. Authorized users need some level of

confidence that a system will provide the requested response within its design limitations. Security

policies help ensure this and can also help prevent DOS attacks by identifying permitted accesses

and eliminating any system response for denied accesses.

An organization having an understanding of these three computer security elements can estab-

lish computer security requirements and identify security policies enforced by security mechanisms.

Security mechanisms are the means of achieving the requirements by identifying the “method[s],

tool[s], or procedure[s] for enforcing a security policy” [Bis03].

Encryption and information hiding are a primary focus of many researchers today, particularly

as relates to WSNs. These mechanisms address many security concerns in the area of integrity and

access control and contribute significantly to the security of networks. However, these efforts do not

address policy management.
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Conversely, this research is not concerned with the mechanisms, but rather with security poli-

cies. The interest here is specifically in policies that specify the confidentiality and integrity require-

ments of a system. It considers statements of what actions are, or are not, permitted. Security

policies are discussed in more detail in Section 2.3, but Sections 2.2.2 and 2.2.3 consider confiden-

tiality and integrity in the context of security policies.

2.2.2 Confidentiality. At its core, confidentiality means individuals (or processes) cannot

access information unless they are authorized to do so. Assurance of confidentiality implies that

secrets remain secrets—protected data is hidden from all but the intended audience.

For this confidentiality discussion, consider a system with two security levels, S and U. The

system contains subjects and objects associated with each of these levels. Level S, and thus every

entity associated with this security level, has a higher confidentiality (or classification) level than

level U (and associated entities).

2.2.2.1 Bell–La Padula Model. Information flow analysis can describe, in part,

the confidentiality of a system. The confidentiality requirement from the Bell–LaPadula Model

(BLP) [BL75] dictates that reads and writes by subjects of objects (say, files in this example) are

permitted except that subjects at level U may not read from level S files (the simple security con-

dition) and subjects at level S may not write level U files (the ∗–property). Because the presumed

ways for information to flow from one object to another is by reading or writing, this scheme pre-

serves confidentiality by specifying that information categorized as S shall not flow into a U file (or

to a U subject) by either method.

A formal representation of the BLP model is presented here with slight notational modifica-

tions [Bis03]. The system consists of the sets of objects identified in Table 2.

Table 2: Objects in the BLP Model

Set Description

A the set of all actions

F the set of subject and object clearances per state

H the set of object hierarchies per state

M the set of sets of permitted accesses per state as contained in a matrix representation

O the set of all objects

S the set of all subjects

V the set of all system states
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A state v ∈ V can be represented as (b,m, f) where b ∈ P (S ×O×A) (using P (x) to indicate

the powerset of x) are the rights permitted per the security definitions, and m ∈ M . Hierarchies

h ∈ H can be included in a state v, but for a WSN, the hierarchies do not change over time

and are therefore omitted. m are discretionary rights—rights assigned to a subject by a security

administrator. The functions fS , fC , and fO identify a subject’s maximum and current security

levels and an object’s security level, respectively. f ∈ F can be the triple (fS , fO, fC), but in a WSN

the subject is not expected to change security levels and, therefore, the discussion below considers

fS as the sole security level of the subject. Thus, f ∈ F is the pair (fS , fC). If a subject s ∈ S is

permitted action a ∈ A on object o ∈ O, then a ∈ m[s, o] where m ∈ M .

The domination function, dom, defined below, is true when one entity has an equal or higher

security level than another (i.e., fS(s1) dom fO(o1) means that subject s1’s current security level is

greater than or equal to the level of o1).

Definition 2.2.1. The security level l1 dominates the security level l2 if and only if l1 ≥ l2 and is

written l1 dom l2.

Let a ∈ A where A ={r,w}, for the respective actions read and write. The presentation

in [BL75] identifies two other actions, namely, execute (meaning an action that includes neither read

nor write) and the combination read–write (where information flows both toward and away from the

actor in the same action). Analyzing the absence of data flow (e.g., the action execute) adds nothing

to this research and is, therefore, omitted. On the other hand, an action in a WSN is expected to

be either read or write and, thus, the combined read–write action is also omitted.

The simple security condition in Definition 2.2.2 below identifies the first mandatory access

requirement for a system to be considered secure: it cannot permit a subject with a given security

level to read an object with a higher security level. This is commonly stated, “reads up are not

allowed.”

Definition 2.2.2. (s, o, a) ∈ S × O × A satisfies the simple security condition relative to f if and

only if one of the following holds:

a. a = w

b. a = r and fS(s) dom fO(o)

The simple security condition identifies particular accesses that satisfy the simple security

condition, but a state v ∈ (b,m, f) satisfies the simple security condition if ssc rel f is satisfied by

every element of b. If every state satisfies the simple security condition then the system satisfies the

simple security condition.
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The ∗–property, defined next, addresses access requirements for a given state, where b(s :

a1, ..., an) is the set of objects to which s has {a1, ..., an} rights (i.e., b(s : a1, ..., an) = {o | o ∈
O ∧ [(s, o, a1) ∈ b ∧ ... ∧ (s, o, an) ∈ b]}). This definition identifies the additional requirement that

“writes down are not allowed.”

Definition 2.2.3. A state (b,m, f) satisfies the ∗–property if and only if, for each s ∈ S, the

following holds:

a. b(s : w) 6= Ø ⇒ [∀o ∈ b(s : w)[fO(o) dom fS(s)]]

c. b(s : r) 6= Ø ⇒ [∀o ∈ b(s : r)[fS(s) dom fO(o)]]

The third requirement for a secure system is in Definition 2.2.4. Permissible system accesses

must all appear in the discretionary rights of the access control matrix.

Definition 2.2.4. A state (b,m, f) satisfies the discretionary security property (ds-property) if and

only if, for each triple (s, o, a) ∈ b, a ∈ m[s, o].

Finally, system security is defined in

Definition 2.2.5. A system is secure if it simultaneously satisfies the simple security condition, the

∗–property, and the discretionary security property.

Consider subjects ss and su and files (objects) os and ou and the other populated BLP model

sets shown in Table 3. An example of a discretionary access matrix in Table 4 complements the

model. The arrow → indicates a mapping from the entity on the left to the entity on the right.

Table 3: Example System’s Elements Expressed in BLP Model’s Sets

Set Contents

S {ss, su}
O {os, ou}
A {r, w}
V {v}
M (see Table 4)
F for state v, for every function f : fS(ss) = fS(ss) =S,

fO(os) =S, fS(su) = fS(su) =U, fO(ou) =U
H {S → {U}, U → {Ø}}

Table 4: Example System’s Discretionary Access Matrix

Obj
Subj os ou

ss r, w r
su w r
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Table 5 identifies the possible actions by the subjects in the system and identifies whether

or not each action is allowed and why, illustrating the effectiveness of the BLP model in capturing

confidentiality for the example system.

Table 5: Results for BLP in Example System

Question Result Reason if Disallowed

Can su perform r on ou Allowed
Can su perform w on ou Disallowed Def 2.2.4, w6∈ m[su, ou]
Can ss perform r on ou Allowed
Can ss perform w on ou Disallowed Def 2.2.3, ¬fO(ou) dom fS(ss)
Can su perform r on os Disallowed Def 2.2.2, ¬fS(su) dom fO(os)
Can su perform w on os Allowed
Can ss perform r on os Allowed
Can ss perform w on os Allowed

The BLP model defines confidentiality in an axiomatic system. The formal definitions and

representations provide the means for evaluation of various systems with respect to the model. This

depiction is not, however, a comprehensive model of confidentiality.

2.2.2.2 Other Confidentiality Models. Suppose the above system implements tasks

on a first–come, first–served basis and employs a shared memory space. With this architecture there

are new confidentiality concerns. Can a low–side subject (i.e., at security level U) learn anything

about a high–side file (i.e., at security level S) by observing memory usage? Certainly a low–side

subject can identify something about the high–side if it can directly or indirectly monitor processor

availability. It may also be that high–side inputs could alter low–side outputs.

These concerns are captured in the concepts of non–deducibility and noninterference. A system

is non–deducibly secure if a subject with a lower confidentiality level cannot determine anything

about the inputs of subjects with a higher confidentiality level [Sut86]. Noninterference (defined for

certain deterministic systems) is slightly stronger and addresses security from a different perspective,

namely, whether a distinct group of subjects’ inputs into the system will impact the output of subjects

from another group [GM82; McC90].

Consider the following example. Non–deducibility is violated if a low–side subject can read

memory space that has been written by a high–side subject; even if the written data is encrypted

non–deducibility would hold because subjects at level U are not allowed to deduce anything about

the inputs by subjects at level S. Even with encryption, the low–side subjects might be able to

determine information about the input data by recognizing the the changing size of of available

memory space or the inability to make immediate use of the processor. In this latter case the

information transferred is not the high–side data itself, but characteristics of the data.
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Noninterference is manifest in this system if any sequence of low–side inputs results in different

low–side outputs, depending on the particular sequence of high–side events (i.e., high–side events

affect low–side functionality). In this sense it is stronger than deducibility: a low–side subject’s ability

to identify that a high–side event has occurred violates noninterference while it doesn’t necessarily

violate non–deducibility.

To contrast the BLP model with the properties identified here, BLP considers information

transfer in a direct sense—a subject must read or write to an object for information to flow between

the two entities. Non–deducibility and noninterference capture potential disclosures via indirect

means. Satisfying the BLP criteria could conceivably be done through software modifications while

meeting non-deducibility and noninterference requirements likely requires a combined hardware–

software solution.

Confidentiality is a central element of access control. It determines who has access to resources

and who is prevented from performing certain actions or from accessing particular data; it identifies

which subjects have what rights to what data. Confidentiality addresses whether or not data has

been (or could be) compromised. Integrity complements this aspect of computer security and is

described next.

2.2.3 Integrity. A system with integrity provides trustworthy data and reliable commu-

nications; this property guarantees the origin of data (called authentication, cf. Section 2.1.4) and

prevents the improper manipulation of data [Bis03]. In one sense, integrity is addressed by mecha-

nisms and policies similar to confidentiality. Data integrity is maintained if only those authorized to

handle it have done so.

With the word integrity comes the implication of trust. Consider an example in which subjects

and objects belong to one of two levels of trust, trusted (H) and untrusted (L). If a subject, sh, at

integrity level H, writes to an object ol, at level L, there is no diminishing of trust—ol is no less

trustworthy than before. If an untrusted subject, sl, writes to a trusted object, oh, however, the

newly written information (at integrity level L) puts untrusted information in oh thus causing it to

become an untrusted object.

This is, in part, what the Low Water Mark Policy was designed to prevent [Bis03]. The Low

Water Mark Policy allows trusted subjects to write to less trusted objects only if the integrity level

of the object is dominated by (i.e., is less than or equal to) the integrity level of the subject. It

does, however, allow a subject to read from an object with a lower integrity level, but the subject’s

integrity level is then reduced to that of the object read. The rules for the Low Water Mark Policy

are
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1. s ∈ S can write to o ∈ O if and only if i(o) ≤ i(s).

2. If s ∈ S reads o ∈ O, then i′(s) = min(i(s), i(o)), where i′(s) is the subject’s integrity level

after the read.

3. s1 ∈ S can execute s2 ∈ S if and only if i(s2) ≤ i(s1).

where function i(x) returns the integrity level of x and min(i(s), i(o)) returns the lower of the

integrity levels i(s) and i(o). Execution models inter–process communications, such as procedure

calls.

The primary weakness of this scheme is that a subject’s integrity level is non–increasing leading

to the possibility that subjects may eventually lose all permissions to read trusted (higher integrity)

objects. A change to rule 2 remedies this situation and is called the Ring Policy [Bis03]:

2. A subject may read any object, regardless of integrity levels.

In this scheme subjects have the option to access objects in the various integrity groups and the

integrity of objects is preserved, although only with respect to direct modification. This implies the

subjects are designed to properly handle the various levels of trust. Any formal representation of the

enforcement of this security policy implies the subject must contain security enforcement structures

within itself. If this is not the case, the scheme will quickly fail to ensure any meaningful notion of

integrity.

Biba’s Strict Integrity Policy model [Bib77] takes a more restrictive stance with respect to

integrity and is the dual of the BLP model. It has two axioms that are the inverses of the simple

security condition and the ∗–property to prevent direct and indirect data modifications that might

be harmful to the trustworthiness of the information in the system. The simple security condition

prevents higher integrity subjects from reading lower–integrity objects while the ∗–property prevents

lower–integrity subjects from writing to higher–integrity objects. Together these preserve Biba’s

notion of trustworthiness.

The following contrasts Biba’s terminology and that of BLP:

• An integrity level in Biba corresponds to a security level in BLP.

• The leq relation in Biba’s model is the inverse of BLP’s dom relation.

• Observe corresponds to read and modify to write.

Building on both the BLP and Biba’s Models, Lipner [Bis03] developed a scheme where both

confidentiality and integrity are simultaneously enforced. While trust is a key element of this model,

separation of function and separation of duty are also introduced to facilitate policy requirement of
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complex systems. Lipner’s “Integrity Matrix Model” specifies two security levels and five categories

of data. Based on the roles of the subjects (e.g., developmental programmers, auditors), the privileges

associated with them (e.g., low security developmental code, production code), and the limitations

imposed on them (e.g., a developmental programmer should not be permitted to modify production

code), the effectiveness of implementing confidentiality and integrity principles in a realistic system

was demonstrated.

Integrity policies can cover a wide range of security requirements. Most applicable are those

aspects related to access control that address questions like

1. Given a subject is granted a certain level of trust, what actions does the policy permit?

2. Given an integrity–preserving policy, how does one ensure that when it is composed with

another integrity policy, the original policy remains intact?

The following model is neither simply an integrity policy nor a confidentiality policy, but

enforces principles from both. While Lipner’s model is relevant to real–world scenarios, the Chinese

Wall model provides a slightly more complex model with formalisms.

2.2.4 Chinese Wall Model. The Chinese Wall (CW) addresses commercial concerns re-

garding access to data from competing companies. This model has been recognized as useful for

preserving integrity requirements in practice ([BN89] notes that the CW model has been used as

the required model for the United Kingdom Stock Exchange). This model provides access for sub-

jects to objects while preserving specific requirements to prevent conflicts of interest.

In some business settings it is vital that individuals with access to certain information be

prevented from accessing other information to avoid conflicts of interest with respect to the data in

the system. The discussion that follows is based on the presentation in [BN89].

Suppose there is the set of objects, O, and a set of subjects, S. In the example of Figure 2

(further elaborated below) elements of O are distributed among conflict of interest (COI) classes

(COI1 and COI2), that contain datasets (CDs) that should not be accessible to a given subject

when another CD in the COI class has been accessed by the same subject. Let the CDs in COI1

be CD1 and CD2 while CD3 and CD4 are in COI2. One other CD, sanitized, is labeled CDSan

and resides in its own COI class, COISan.

A subject s begins with the ability to access (or read) data in all datasets. Once the subject

has accessed a data item, say, D3, from CD2, the data in the other dataset (CD1) within the same

COI class (COI1) becomes inaccessible to s. Objects in the sanitized CD (CDSan) can be accessed

without regard to previous accesses because it resides in its own COI class.

22



Figure 2: System P

Write permissions are restricted so that indirect violations of the security principles are not

possible (e.g., reading via a “mailbox”). A subject may only write to a data object if both read

authorization to the object is already granted and there are no read authorizations for data objects

in any other CD with the exception of CDSan. Otherwise, the subject might divulge restricted

information to other subjects who lack permissions to obtain that information.

To begin formalizing the model let L be the set of security labels (x, y) with one label per

object, where x and y represent the COI class and CD, respectively. Functions X(o) and Y (o)

return the x and y components, respectively, for the label associated with object o. Thus, x1 is

the COI and y1 is the CD for o1 for X(o1) and Y (o1) respectively. A request r is formatted r(h, j)

where subject sh is requesting to read object oj . The sanitized COI and CD are denoted xo and yo,

respectively.

The following axioms define fundamental properties of the CW security system. The first

states that objects in the same CD also reside in the same COI class. The second is the converse—if

two objects are in different COI classes, they must be in different datasets.

Axiom 2.2.1. y1 = y2 ⇒ x1 = x2

Axiom 2.2.2. x1 6= x2 ⇒ y1 6= y2

N is an ‖S‖× ‖O‖ matrix (where ‖S‖ denotes the cardinality of S) that tracks which subjects

have accessed which objects, using boolean entries in the matrix. N(h, j) identifies whether subject

sh has accessed object oj (i.e., the matrix entries are either true or false).
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Definition 2.2.6. N is a boolean matrix with elements N(h, j) corresponding to members of S ×O.

Entries are true if sh has or has had access to oj. When a new access is granted to or performed by

sk for object ol, N is replaced by N ′, a matrix identical to N except that the entry for N(k, l) is true.

Read access to an object, l, is granted if and only if the subject, k, has never accessed another

object in the COI class or if the object is in the same dataset as previously accessed objects.

Axiom 2.2.3. r(k, l) → y ⇐⇒ ∀N(k, j) = true, ((xj 6= xl) ∨ (yj = yl))

The initially secure state is defined and, given this state, the first request for access is permitted.

Axiom 2.2.4. ∀(h, j)(N(h, j) = false) is an initially secure state.

Axiom 2.2.5. ∀(h, j)(N(h, j) = false) ⇒ ∀(h, l)(r(h, l) → y)

Sanitized data has unique properties:

Definition 2.2.7. For any object oj

• yj = yo ⇒ oj contains sanitized information

• yj 6= yo ⇒ oj contains unsanitized information

The next three theorems establish the basis for the model.

Theorem 2.2.1. Once a subject has accessed an object, the only other objects accessible by that

subject lie within the same company dataset or within a different COI class.

Theorem 2.2.2. A subject can at most have access to one company dataset in each COI class.

Theorem 2.2.3. If for some COI class X there are n company datasets, then the minimum number

of subjects which will allow every object to be accessed by at least one subject is n.

Even given the above structure there is the possibility of inappropriate indirect transfer of

information. Suppose there are two COI classes Xa and Xb with datasets Dax and Day from class

Xa and Dbx from class Xb as presented in Figure 3. Further suppose subject Su has access to Dax

and Dbx while subject Sv has access to Day and Dbx. Su is permitted to read from Dax and write it

to Dbx. This indirectly provides the possibility of data transfer from Dax to Sv, effectively violating

COI rules for class Xa via Sv.

The following theorem addresses this possibility using the concept of sanitized data. Sani-

tized data removes any sensitive information from data that is written to a different dataset. The

enforcement of this protection comes from a final theorem:

Theorem 2.2.4. No object containing unsanitized information can be read from a company dataset

that is different than the one for which write access is requested.
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Figure 3: CW Write Violation

The CW model represents neither a confidentiality nor an integrity security policy, but has

elements of both. With respect to confidentiality, CW prevents unauthorized subjects from accessing

data. On the other hand, a conflict of interest would be a breach of its notion of integrity and CW

prevents such breaches. CW, as is BLP, is an axiomatic system with which security assertions and

mathematical comparisons can be made to analyze systems employing its principles.

The Chinese Wall, along with the other models above, demonstrates what is perhaps a more

important element of formalized modeling: that the authorization of a subject to perform some

action on an object is unambiguous. As has been observed above, work with WSNs requires that

components implemented in the nodes be small with respect to memory and computation require-

ments. Clear delineation of subject’s rights should reduce computation requirements and, as long as

the representation of subjects and the actions each may perform on the various objects is compressed

sufficiently, memory requirements should be modest as well.

2.3 Security Policy Representation and Composition

Several elements are required to compose security policies in practice. The policies must be

expressed appropriately, a framework must exist to compose those policies, and the resulting policy

information must be transformed into representations that can be expressed logically for computer

programs. These areas are addressed successively in Section 2.3.2, 2.3.3, and 2.3.4. Section 2.3.1

first introduces some basic concepts.

2.3.1 Introduction to Security Policy Composition. Research into security policy composi-

tion uses the specific security properties discussed in Section 2.2 and investigates them from various

perspectives. Some work focuses on applications such as a federated system of systems [BGS92] or
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logistics procurement activities [NK93], both of which impose centrally–controlled security solutions.

Others compose independent systems with certain security properties, yielding a larger system that

manifests the same security properties [JM92; McC87; McC88; AL93; Mil94]. Analysis of proper-

ties and their composition is accomplished from various viewpoints such as the state–based [BY94],

trace–based [McL92], or application–oriented [GG99] perspectives. There is enough variance among

these properties and their composition that some have focused on the categorization and classifi-

cation of these security elements [FG95; FG01; Zak96]. Regardless of the approach, however, two

principles are particularly important to maintain when composing policies [GQ94]:

Autonomy: an access allowed by a policy must be allowed by the composition, and

Security: a composition must forbid any access forbidden by a component policy.

Contradictory results are possible if one policy permits access that another disallows. Therefore,

during policy composition there must be a mechanism to handle this possibility.

The composability of noninterference policies has been analyzed with consideration of the prin-

ciples of deducibility security and restrictiveness [McC88]. McCullough determined that deducibility

is not a composable property; that is, one cannot make assertions about the deducibility of a system

composed of deducibility–secure components [McC90]. Restrictiveness addresses that problem, pro-

viding rules that identify when high–level activities have no impact on low–level states, actions, or

values. This research focuses on security policy composability with respect to a query–based WSN.

2.3.2 A Policy Language. A number of methods for expressing security policies have been

developed [JSS97; CC97; UBJ+04; RN02; RZFG99]. [JSS97] identifies subjects as those entities to

whom authorizations might belong, the things to be done as actions, and the items on which the

actions are performed as objects. In this Authorization Specification Language (ASL), constants, vari-

ables, predicates, and rules designed around sets of these entities are used to generate authorization

specifications.

The types of entities used in ASL are presented in Table 6 along with the variable symbols

representing sets of variables associated with the types. Subjects might act as individual entities

(users) or may act as members of groups or in certain roles. Groups have certain permissions and

are relatively static collections of subjects; subjects cannot choose when to be a part of a group

and when to not be (similar to types in the object–oriented paradigm). In a relationship similar to

subject groups, objects may be operated on because of the individual object’s properties or because

of the type of object it is. Roles, in contrast, can be activated and deactivated and vary over time.

Vr is the variable set of roles while VR is the variable set for the powerset of roles. Examples of the
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Table 6: ASL Types and Variables

Type Symbol Description Associated Variable Set

A actions Va

G groups Vg

Obj objects Vo

R roles Vr, VR

S subjects Vs

T object types Vt

U users Vu

sign + for authorized, − for denied n/a
CS constant symbols n/a
PS predicate symbols L(v1, ..., vi)
SA signed actions Vsa

VS variable symbols n/a

uses of the last two variable sets are r ∈ Vr as in the active predicate and R ∈ VR as in the grant

predicate, both discussed below.

Predicates are a more complex ASL type. A predicate has zero or more parameters as indicated

by subscripts a, g, o, r, R, s, s1, s2, t, and u in the table. These parameters may be variables or

constants and are included as prescribed by the particular predicate definition. Table 7 presents

some possible predicates with their definitions.

Table 7: ASL Predicates

Predicate Expression Semantics

cando(s, o, +a) Authorization for subject s ∈ Vs to perform action a ∈ Va on object
o ∈ Vo as explicitly specified by the security administrator

dercando(s, o, +a) Derivation expressed the same as cando; results from some deriva-
tion using other predicates and inference

do(s, o, +a) Resolution rule that identifies an authorization the system must
recognize; can resolve conflicts between cando and/or dercando

grant(o, u, R, +a) Subject u with active role set R ∈ VR may perform action a ∈ Va

on object o ∈ Vo (this predicate type enforces the access control
policy)

done(o, u,R, a, n) The nth action (where n ∈ N) was a ∈ Va, was performed on object
o ∈ Vo by subject u ∈ Vu with active roles R ∈ VR

active(u, r) Role r ∈ Vr is active for subject u ∈ Vu

dirin(s, g) Subject(s) s ∈ Vs is directly a member of group g ∈ Vg

in(s, g) Subject(s) s2 ∈ Vs is a member of group g ∈ Vg, but perhaps not
a direct member

typeof(o, t) Object o ∈ Vo is of object type t ∈ Vt

error() If error() can be derived there is a problem with the specification
or use of authorizations
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Predicates can be incorporated into language rules. For example, cando(s, o, < sign > a) ←
L1 & ... & Ln identifies that subject s can (or cannot, depending on sign) perform action a on object

o when expressions L1 through Ln hold. The symbology X ← Y , used by [JSS97], is converted to

Y ⇒ X below, indicating the elements X are true when the elements of Y hold.

To simplify the presentation in this section, wherever they appear, s ∈ Vs, s′ ∈ Vs, o ∈ Vo,

o′ ∈ Vo, and a ∈ Va. Similarly si ∈ Vs, oi ∈ Vo, and ai ∈ Va where i ∈ N and N is the positive

integers.

Language rules are used to create policies that can be composed with other access control

policies. Details about policy composition are discussed in Sections 2.3.3 and 2.3.4, but two simple

examples of integrity policies are presented below.

Policy A. Policy A is defined in the environment described in Table 8 by a system

security administrator to have two integrity levels, Low (L) and High (H). There is one object that

can be manipulated by subjects, file F1 on the Low side (of type LFile), and two subjects, SA1 on the

Low side (in group L) and SA2 on the High side (in group H). A formal description of an integrity–

sustaining policy follows with the predicate representation followed by a plain text description of

that predicate.

Table 8: Populated ASL Types for Sample Policy A

Symbol Value(s)

A {read, write}
G {L, H}

Obj {F1}
R {}
S {G, R, U} ≡ {L, H, UA1, UA2}
T {LFile, HFile}
U {UA1, UA2}

sign {s | s ∈ {+, −}}
CS {LFile, HFile, F1, UA1, UA2, read, write, N}
PS {cando, dercando, do, grant, done,

active, dirin, in, typeof, error}
SA {〈sign〉 a | a ∈ A}
VS {Vo, Vt, Vg, Vr, VR, Va, Vsa, Vs}

dirin(UA1, L) — user UA1 is in group L

dirin(UA2, H) — user UA2 is in group H

typeof(F1, LFile) — F1 is an LFile, understood to be on the Low side
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cando(s | s ∈{L ∪ H}, LFile, +write) — any subject in groups L or H is permitted to

write to an LFile

cando(s | s ∈{L}, LFile, +read) — any subject in group L is permitted to read an LFile

cando(s | s ∈{H}, LFile, −read) — any subject in group H is not permitted to read an

LFile
In addition to the security administrator ’s requirements, three rules are used to complete the

system’s definition. The first two, derivation rules, identify that an authorization is derived when the

specified cando and in predicates both hold; they rely on type membership to deduce authorizations.

DRule 1: cando(g, o, a) ∧ in(s, g) ⇒ dercando(s, o, a)

DRule 2: cando(s, k, a) ∧ typeof(o, k) ⇒ dercando(s, o, a)

These rules are applied simultaneously to the security administrator ’s requirements definition and

results in four derived authorizations where each predicate’s triple is a system authorization:

dercando(UA1, F1, +write)

dercando(UA2, F1, +write)

dercando(UA1, F1, +read)

dercando(UA2, F1, −read)

These system authorizations confirm what the security administrator had intended; the authorization

policy can be expressed this way:

(UA1, F1, write) → authorized

(UA2, F1, write) → authorized

(UA1, F1, read) → authorized

(UA2, F1, read) → denied

The third rule completes the policy. It is a resolution rule that specifies a lack of positive access

to an object implies negative access:

RRule 1: ¬(cando(s, o,+a) ∨ dercando(s, o, +a)) ⇒ dercando(s, o,−a)

This rule states the negative authorization is implied when a positive authorization is not present.

This rule doesn’t result in further system authorizations in this example, but does establish a fail–safe

default condition.
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Policy B. Similar to Policy A, Policy B is defined by a security administrator per the

domain in Table 9. This policy has three security levels, Top Secret (TS), Secret (S), and Unclassified

(U). Three subjects, SB1 (in group U), SB2 (in group S), and SB3 (in group TS), each operate in

one of the security levels, U, S, and TS, respectively. There is one file in the system, F2, that is of

the type SFile (at security level S). What follow are the SA’s formal definition of this system and

the results.

Table 9: Populated ASL Types for Sample Policy B

Symbol Value(s)

A {read, write}
G {U, S, TS}

Obj {F2}
R {}
S {G, R, U} ≡ {U, S, TS, UB1, UB2, UB3}
T {UFile, SFile, TSFile}
U {UB1, UB2, UB3}

sign {s | s ∈ {+, −}}
CS {UFile, SFile, TSFile, F1, UA1, UA2, read,

write, N}
PS {cando, dercando, do, grant, done,

active, dirin, in, typeof, error}
SA {〈sign〉 a | a ∈ A}
VS {Vo, Vt, Vg, Vr, VR, Va, Vsa, Vs}

dirin(UB1, U) — user UB1 is in group U

dirin(UB2, S) — user UB2 is in group S

dirin(UB3, TS) — user UB3 is in group TS

typeof(F2, SFile) — F2 is an SFile, understood to be in the S domain

cando(s | s ∈{U ∪ S ∪ TS}, UFile, +write) — any subject in groups U, S, or TS is

permitted to write to a UFile

cando(s | s ∈{U}, UFile, +read) — any subject in groups U or S is permitted to read

a UFile

cando(s | s ∈{S ∪ TS}, SFile, +write) — any subject in groups S or TS is permitted

to write to an SFile

cando(s | s ∈{U ∪ S}, SFile, +read) — any subject in groups U or S is permitted to

read an SFile
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cando(s | s ∈{TS}, TSFile, +write) — any subject in group TS is permitted to write

to a TSFile

cando(s | s ∈{U ∪ S ∪ TS}, TSFile, +read) — any subject in group U, or S, or TS is

permitted to read a TSFile

The above rules are positive authorizations, relying on RRule 1 to make the policy complete.

An alternative is to explicitly identify the negative authorizations within the policy:

cando(s | s ∈{S ∪ TS}, UFile, −read) — any subject in groups S or TS is not permitted

to read a UFile

cando(s | s ∈{TS}, SFile, −read) — any subject in group TS is not permitted to read

an SFile

cando(s | s ∈{U}, SFile, −write) — any subject in group U is not permitted to write

to an SFile

cando(s | s ∈{U ∪ S}, TSFile, −write) — any subject in groups U or S is not permitted

to write to a TSFile
The same three rules as presented with Policy A, DRules 1 and 2 along with RRule 1, apply.

Applying these to the policy defined above yields six derived authorizations that are each predicates

with system authorization triples as their arguments:

dercando(UB1, F2, −write)

dercando(UB2, F2, +write)

dercando(UB3, F2, +write)

dercando(UB1, F2, +read)

dercando(UB3, F2, +read)

dercando(UB3, F2, −read)

These system authorizations again confirm what the security administrator had intended. Using a

notation indicative of a relation between each triple and the set {denied, authorized} the authoriza-

tion policy can be expressed this way:

(UB1, F2, write) → denied

(UB2, F2, write) → authorized

(UB3, F2, write) → authorized
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(UB1, F2, read) → authorized

(UB2, F2, read) → authorized

(UB3, F2, read) → denied

2.3.3 A Policy Composition Framework. A policy composition framework should have the

following characteristics if that framework is to effectively support the composition of access control

policies [BdVS02]:

Heterogeneous policy support is the ability of the framework to combine not only a wide variety

of policies but also a wide variety of languages.

Support of incomplete policies accounts for policies in which part of the specification is un-

known.

Provision for unknown policies uses placeholders where a policy is known to exist, but the policy

itself is unknown until run-time.

Controlled interference provides a means for merging policies when a direct mapping of rules is

impossible.

Expressiveness mandates that a language used within the framework express a wide range of

policy specifications without language extensions.

Support of different abstraction levels is required for efficient and effective policy design, anal-

ysis, and refinement.

Formal semantics implies a declarative language that ensures analysis with proofs and design

verification are possible.

The terms used in a composition framework consist of a fixed set of subjects S, objects O, and

actions A. Terms are of the form (s, o, a) where s, o, and a correspond to an element in S, O, and A,

respectively, with the meaning that s is authorized to perform action a on object o. A subject s can,

by its properties, be a role, group, or user. Similarly object o can function as an object or type. The

definition of a policy is “a set of ground authorization terms” where a ground term is a variable-free

triple requiring no further interpretation to determine its semantic meaning. Such terms are referred

to as system authorizations hereafter. For a dynamic system this means the policy is also dynamic,

responding differently depending on the roles that are active at the moment of any given request.

The structure of authorization constraint languages Lacon may vary, but can be represented

by predicates using no terms other than those found in the sets S, O, and A [BdVS02]. The relation
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satisfy ⊆ S×O×A×Lacon identifies whether a given triple (s, o, a) satisfies the given policy, where

s, o, and a are, respectively, elements of S, O, and A.

Similarly, a rule language Lrule may vary but the closure relation P (Lrule)×P (S×O×A) →
P (S ×O × A) are the permissions that can be derived by each rule per authorizations found in a

given policy.

Using ASL as the basis for an authorization constraint language Lacon, S is the set of subjects

S, O is the union of the sets of objects O and types T, and A is the set of actions A. Lacon is

comprised of the described ASL predicates (e.g., cando and dirin). Similarly, ASL rules are an

example of a rule language Lrule.

To compose Policies A and B from Section 2.3.2, the various sets discussed here are populated.

SA = {L, H, UA1, UA2}, OA = {LFile, HFile, F1}, AA = {read, write}, SB = {U, S, TS, UB1,

UB2, UB3}, OB = {UFile, SFile, TSFile, F2}, and AB = {read, write}. Lacon is translated as the

elements of Table 7 dictate with pertinent expressions within the language given in the discussions of

the policy examples. Using the predicates available in Lacon, the constants and variables for Policies

A and B, and Lrule, and the constructs from first–order logic, each rule in Lrule is of the form

〈predicate expression〉 (〈logic symbol〉 〈predicate expression〉)* ⇒ 〈predicate expression〉 where

logic symbol is from the set {∧,¬∧,∨,¬∨} as exemplified in the rule in(s,H)∧ (cando(s, F1, read)∨
dercando(s, F1, read)) ⇒ dercando(s, F2, read).

Having the framework for policy composition, the discussion turns to the algebra used for

performing the composition process.

2.3.4 An Policy Composition Algebra. Any algebra used for access policy composition

must express the given policies and have the capability to compose them in various ways [BdVS02].

With the assumption that the policies are represented as in Section 2.3.3, consider the following

policy manipulations where P1, P2, and P3 are policies and P is a partially specified policy.

Addition is left–associative, is the union of two policies denoted P1 + P2, and has precedence 2.

Conjunction is left–associative (precedence 2), is the intersection of two policies, and is denoted

P1 & P2.

Subtraction is left–associative (precedence 3) and eliminates restrictions found in one policy from

another. It is denoted P1 − P2.

Closure is left–associative with precedence 3. Closure applies a set of inference rules to a policy to

close that policy. The term closure refers to the complete enumeration of permitted actions
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according to the facts and rules presented in the language and is denoted P1 ∗R, where R are

rules expressed as Horn clauses.

Scoping restrictions are non–associative with precedence 3. These limit the application of a policy

to a specific set of subjects, objects, and actions, and are denoted P1ˆc where c is the set of

subjects, objects, and actions.

Overriding is non–associative (precedence 1). It requires three policies combined via a subtraction,

conjunction, and addition (given policies P1, P2, and P3: subtract P3 from P1 and then add the

conjunction of P2 and P3). It is denoted o(P1, P2, P3) and is shorthand for (P1−P3)+(P2 & P3).

Template is non–associative with precedence 0. Templates provide for incomplete policy specifica-

tions, denoted as τP where τ is the symbol indicating P is a template. Templates are beyond

the scope of this research.

Modification of policy environment e indicated by e[P1/P2](P3) means that the environment is

defined by P1 if P3 = P2 but is defined by P3 otherwise. Modification is not addressed in this

research.

The higher precedence operator in an equation is executed first and the lowest, last. In this scheme

the highest precedence is 0 and the lowest is 3. Associativity describes the order of operations in a

binary operation in the absence of explicit parentheses. In an expression containing more than one

non–associative operator parentheses are required to identify which operator is executed first (e.g.,

o(o(P1, P2, P3), P4, P5)). Left–associative operators are understood to be parenthesized from left to

right when there are no explicit parentheses (e.g., P1 + P2 + P3 ≡ (P1 + P2) + P3).

Expressing policies and providing a means for composing them is necessary, but ultimately

policy expressions must be converted into logic for evaluation. Bonatti, et al., develops a method for

translating policies into logic programs when the rule language consists of triples (cf. Section 2.3.3).

Using this method, an environment, e, maps policy identifiers (labels used to reference specified

policies) to sets of system authorizations. For the policy identifier X in environment e, the semantics

are denoted [[X]]e
def
= e(X) where evaluating X in e identifies the system authorizations, e(X).

Canonical labeling is applied to each policy expression to create a labeled policy expression

used during translation; this identifies the operator within an expression so it can be evaluated

next in the recursively defined translation. Translation of policy E requires the canonical labeling

of E, identified as E`, with the translation of E in environment e into a logic program expressed

as pe2lp(E`, e), as is shown in the first line of Table 10. The function pe2lp operates on the input

parameters to translate from composition symbology (the policy composition expression) into a logic

program (using elements of Lacon and Lrule).
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In this table, P is a policy identifier while F , G, and M are policy expressions. R represents a

set of inference or derivation rules (e.g., R = {(s, o, a) ⇒ (s′, o, a)}) for the policy related through the

∗ operator. L is an authorization term of the form (s, o, a) or a basic predicate p; these constructs’

translations are provided in the last three lines of Table 10, adapted from [BdVS02]. mainpF

denotes the predicate auth`, where ` is the main label of F . The predicates authi and authP

specify the system authorizations identified during translation. Where applicable, the modification

corresponding to the symbolic representation of an expression is included in the table.

Table 10: Translation pe2lp

Expression Logic Program Translation
(Modification)

E pe2lp(E`, e)

P {authP (s, o, a) | (s, o, a) ∈ e(P )} if e(P ) is defined, Ø otherwise.

F +i G {mainpF (x, y, z) ⇒ authi(x, y, z), mainpG(x, y, z) ⇒ authi(x, y, z)}
(Addition) ∪ pe2lp(F, e) ∪ pe2lp(G, e)

F &i G {mainpF (x, y, z) ∧mainpG(x, y, z) ⇒ authi(x, y, z)}
(Conjunction) ∪ pe2lp(F, e) ∪ pe2lp(G, e)

F −i G {mainpF (x, y, z) ∧ ¬mainpG(x, y, z) ⇒ authi(x, y, z)}
(Subtraction) ∪ pe2lp(F, e) ∪ pe2lp(G, e)

F ˆi c {mainpF (x, y, z) ∧ c ⇒ authi(x, y, z)} ∪ pe2lp(F, e)
(Scoping)

oi(F, G, M) {mainpF (x, y, z) ∧ ¬mainpM (x, y, z) ⇒ authi(x, y, z),

(Overriding) mainpG(x, y, z) ∧mainpM (x, y, z) ⇒ authi(x, y, z)}
∪ pe2lp(F, e) ∪ pe2lp(G, e) ∪ pe2lp(M, e)

F ∗i R {trans(L1, i) ∧ ... ∧ trans(Ln, i) ⇒ authi(s, o, a)
(Closure) | (L1 ∧ ... ∧ Ln) ∈ R ⇒ (s, o, a)}

∪ {mainpF (x, y, z) ⇒ authi(x, y, z)} ∪ pe2lp(F, e)

L trans(L, i)

(s′, o′, a′) authi(s′, o′, a′)

p(x1, ..., xn) p(x1, ..., xn)

An example helps clarify the terminology. Policy E = P + Q + o(Q,R, S + T ) is first labeled

with sequential numbering of E’s operators as in P +0 Q +1 o2(Q,R, S +3 T ). Next the main

label of a policy expression X, mainpX , identifies the expression’s root, or final, operator. Given

associativity and precedence rules for E, the main label is +1; this is made clear by analyzing the

fully parenthesized expression (P +0 Q) +1 o2(Q,R, S +3 T ). The operator identified by the main

label is the first used to translate policy expressions into logic programs as presented in Table 10.

For this example mainpE is +1. From the translation table F +1 G applies where F ≡ P +0 Q and

G ≡ o2(Q,R, S +3 T ).
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Iterative application of the translation rules develops the set of system authorizations for the

given policy composition. This logic program representation evaluates the permissibility of activities

within the context of the desired policy composition. A request for the execution of a given action,

represented by a triple (s, o, a), is checked against the entries in the logic program equivalent of the

satisfy relation; the action is permitted only when (s, o, a) ∈ pe2lp(E`, e).

Consider the following example of a composition algebra and translation of the resultant policy

into a logic program. Suppose Policy A (PA) and Policy B (PB) from Section 2.3.3 are implemented

on adjacent systems that must now work together. First the system authorizations are delineated:

For PA

(SA1, F1, +write) (SA1, F1, +read)

(SA2, F1, +write) (SA2, F1, −read)

leads to a relation satisfy ⊆ S×O×A×Lacon ={(SA1, F1, write), (SA2, F1, write), (SA1, F1, read)}

For PB

(SB1, F2, −write) (SB1, F2, +read)

(SB2, F2, +write) (SB3, F2, +read)

(SB3, F2, +write) (SB3, F2, −read)

similarly results in relation satisfy ⊆ S×O× A×Lacon ={(SB2, F2, write), (SB3, F2, write), (SB1,

F2, read), (SB3, F2, read)}

The security administrator determines that L in Policy A is equivalent to U in Policy B, H is

similarly equivalent to S, and TS remains higher than all others. The rule to implement this is

R = {in(Vu, L) ⇒ in(Vu, U), in(Vu, H) ⇒ in(Vu, S)}.

The intended closure of the composed properties incorporates the original system authoriza-

tions and adds terms as determined by the application of the new rules. The algebraic expression of

this composition is as PC = (PA + PB) ∗ R, where PC is the policy composition of PA and PB.

Applying rule in(Vu, L) ⇒ in(Vu, U) leads to

newDercando1 = {dercando(SA1, F2, −write), dercando(SA1, F2, +read)}
while rule in(Vu, H) ⇒ in(Vu, S) leads to

newDercando2 = {dercando(SA2, F2, +write), dercando(SA2, F2, +read)}.

(PA + PB) ∗ R is rewritten (PA +0 PB) ∗1 R in preparation for translation pe2pl((PA +0

PB) ∗1 R) = (pe2pl(PA, e) ∪ pe2pl(PB, e)) ∪ pe2pl(newDercando1) ∪ pe2pl(newDercando2). All of

these manipulations yield the following policy with the understanding that any triples not specified

are not authorized:
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authPA(SA1, F1, write) → authorized ,

authPA(SA2, F1, write) → authorized ,

authPA(SA1, F1, read) → authorized ,

authPB(SB2, F2, write) → authorized ,

authPB(SB3, F2, write) → authorized ,

authPB(SB1, F2, read) → authorized ,

authPB(SB2, F2, read) → authorized ,

auth1(SA1, F2, read) → authorized ,

auth1(SA2, F2, write) → authorized , and

auth1(SA2, F2, read) → authorized .

2.4 Related Research

The above sections describe technologies directly related to this research. This section discusses

related research efforts: WSN security, policy composition, and policy languages.

Security for WSN’s has garnered a great deal of attention. Some articles focus on identifying

areas of WSN security that still require a great deal of research [Sta04; PSW04]. Much of the

current research is focused on encryption protocols and other data manipulation methods to promote

confidentiality, integrity, and provide effective authentication [ZG04; RSZ04; KSP06]. Encryption

key management appears prominently in related research efforts, a few of which are identified below.

One effort among many seeking key predistribution schemes to augment security in WSNs

is [DDH+05], shown to have a high probability of non–compromised communications in a WSN

when the number of compromised nodes is less than a certain percentage (33%) and when the

number of hops required for communication is limited (≤ 3 hops).

A security architecture called SPINS [PSW+01] establishes a secret key between WSN nodes

using a gateway as a trusted third party. Communications subsequent to key establishment do not

require third party involvement. The key helps ensure the confidentiality of communications within

the WSN.

The Reputation–Based Framework for Sensor Networks [GS04] notes cryptography’s limita-

tions with respect to certain internal attacks or failures and addresses these by observing node be-
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havior to determine trustworthiness and counter various types of possibly adverse activities within

the network.

Some research related to WSN security is not WSN–specific, but focuses on the concealing

of policy information within environments such as a WSN using one–way hash functions [KHJ02].

One–way hash functions protect policies based only on a current event rather than on a sequence

of events. Other efforts assume an adversary will infiltrate the WSN and attempt to identify and

eliminate such a threat [GS04; AIL05]. No related work appears to implement a dynamic security

policy management within a WSN.

Policy composition is approached from various perspectives. Some research focuses on or

manipulates specific security properties [McC88; Zak96] with others using the term composition to

address the joining of two systems exhibiting the same security property [McC87; JM92].

Similarly, [AL93] analyzes components, their policies, and the effects of linking the components,

and thus their policies, together. These policy composition research efforts analyze event traces or

state models to determine the accuracy or effectiveness of the composition. In contrast, the research

presented herein composes stateless policies and considers previous events and the current status of

the system as irrelevant to whether or not a particular request is granted.

Languages expressing policy and policy compositions vary widely and are sometimes coupled

with particular applications. Ponder [DDLS01] is an object–oriented–style methodology for speci-

fying policies. It specifies management functions for distributed networks and thus avoids formal–

language modeling while providing a widely extensible and flexible framework for policy specification.

Law–Governed Interaction [AMN02] addresses enterprise system management, and requires

layered security policies and subsequent interaction of those policies. Policy compositions in this

system are possible because each policy is a descendent of a common superior policy. Subordinate

policies and laws thus structurally conform to the same set of rules established at the higher level.

Binder [DeT02] is a logic–based security language to communicate security requirements via

Prolog–like logic statements. This approach uses an open system to express security requirements

for distributed systems, not concealing the security statements.

Other languages exist, but the one used herein [JSS97] provides formalisms for analysis and

lends itself to analysis of system authorizations. These characteristics are helpful in accomplishing

the research objectives within the context of a WSN.

38



III. WSN Authorization Specification Language

Any policy–enforcement system must have a means for expressing the policies—a policy specifi-

cation language. This language should be flexible to express a variety of policy types as well as

a number of implementations. It must also have sufficient structure to permit a formal examination

of policy properties and identify adherence to stated requirements. An additional requirement is

imposed by a WSN; evaluation of policies specified in the language must produce an expression of

the security policy that is compatible with the limited resources of a WSN node. The WSN Autho-

rization Specification Language (WASL), described below, provides an effective representation for

a wide variety of policies including the policy types mentioned herein and provides the means for

composition, as well.

A WASL policy, with the formal basis of the language drawn from ASL [JSS97], is defined using

three kinds of statements: identifiers (constant or variable terms), relational statements, and rules.

The type–hierarchy of statements is shown in Figure 4; the † indicates an abstract supertype—a

supertype of which there are no specific instances.

Figure 4: Statements in WASL

A policy is expressed in WASL as a set of Statements contained within a Block. Alpha–

numeric constants and variables identify the system’s entities and must be declared as terms of

IdDecl; Relations identify relationships among terms and are expressed as r(t1, ..., tn) where r

is the relation symbol and ti are the constant or variable terms appropriate for r. The primary

Relations are the statements Dirin, In, Active, Equals, Leveltype, Inlevel, Levelorder, Levelgeq,

and Done. A Rule asserts that when some condition is met, the Relational consequence in the the

Rule is true; variable terms are found only in Rules. Error is a special Statement that is a consequence

of some Rules or when specification errors are identified; the presence of this statement in the policy

indicates a contradiction in the assertions of the policy.

Authorizations are expressed through the Relation statements called AuthTypes: Act, Do, Cando,

and Auth. Discretionary authorizations (authorizations based on the system administrator’s deter-
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mination) are expressed using Act (used solely for role–based policies) and Cando while Do enumerates

mandatory (rule–based) authorizations. Auth is used to express the authorizations for a system. All

of the above statement types establish the policy used to determine a system’s authorizations; these

terms are expressions of the authorizations of each subject to the various objects using the Auth

statement type.

The most significant differences between WASL and ASL [JSS97] include the following, with

some language elements added to focus on security levels and their hierarchy:

• Relations do and cando represent mandatory and discretionary accesses respectively (e.g.,

do(Subj1,Obj2,Read)).

• Relation auth expresses system authorizations

(authorization decisions, e.g., auth(Subj1,Obj2,Write)).

• Type level identifies the system’s security levels

(e.g., const level Unclass).

• Type leveltype identifies the category of security levels as associated with the leveltype rela-

tion (e.g., const leveltype BLP; leveltype(Unclass,BLP).

• Relation dirin(e,g|k) is used to provide a nested hierarchy of capabilities and identities for

both subjects and objects.

• Relation inlevel(e,l) associates entity e (a subject, group, object, or kind) with l (a level).

• Relation levelorder(l1,l2) orders security levels where l1 is “higher than” l2.

• Relation levelgeq(l1,l2) identifies level l1 as “greater than or equal to” level l2.

• Relations dercando, done, grant, and kindof are not used.

Additionally, whereas ASL expresses facts implicitly within rules, WASL generates an exhaustive,

explicit expression of authorizations. This listing requires the assertion of facts via relational state-

ments.

Section 3.1 presents the environment WASL is assumed to be implemented in and continues

with a comprehensive presentation of the language in Section 3.2.

3.1 Network Under Study

This section examines the limitations of WSNs that lead to particular design decisions. For

example, due to bandwidth, memory, and processing power limitations nodes do not perform com-

pilation or composition; these functions are performed at the gateway. WSN characteristics are

presented in Section 3.1.1 while policy–related responsibilities are discussed in Section 3.1.2.
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3.1.1 System Characteristics. The WSN under consideration is a query-based system with

dozens to thousands of resource–constrained nodes and a more powerful gateway computer. Each of

these characteristics impacts implementation decisions discussed in Section 3.1.2.

In a query–based system information is transferred primarily as a result of requests for data.

This can also be thought of as a pull–oriented rather than push–oriented system; the node does

not automatically send its data to nearby nodes but instead responds to queries for data. Queries

may be received by any network node and, if the query arrives at a node other than the intended

destination, it is routed appropriately.

Queries may originate at nodes external to the WSN. No assumptions are made about these

nodes other than that they are capable of communicating with the nodes in the WSN, including

authentication with a verification of security properties. The external nodes may be participating

in a network that functions under a security policy distinct from that of the WSN. The provision

for handling queries when the querying subject is external to the WSN is addressed by composition

(Chapter V).

Each node in the WSN may respond to a query and participate in any query–response exchange

as a message router in the network. Given that messages may be classified or protected at different

security levels, it is assumed that each node has a trusted kernel, secure to the highest level of

security in the WSN. Thus, regardless of the security level at which a node functions, the trusted

kernel can process messages at higher security levels.

The gateway is a laptop–class node that functions as the administrative hub of the WSN. Policy

or other software updates are distributed from this node and it generally functions as the interface

between the WSN and external networked devices. Because the WSN may be highly distributed, it

is not assumed that it can communicate directly with each of the nodes in the network. Nor is it

assumed that a response from a node must pass through the gateway before being received by an

external node.

Data communicated to, from, or within the network is encrypted at an appropriate level and all

subjects adhere to an authentication scheme. Each query is thus secure with respect to confidentiality

and integrity while in transit. Additionally, because the querying subject is properly identified, policy

information can be effectively used to determine appropriate responses. The policy itself is expected

to change over time with subjects or groups being added or their authorizations modified. But these

changes are assumed to occur infrequently.

3.1.2 Distribution of Responsibilities. The primary policy–related tasks include the follow-

ing:
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1. Controlling the WSN security policy specification (by the security administrator),

2. Compiling the WSN’s policy,

3. Collecting external networks’ possibly partial policy specifications,

4. Composing the WSN’s policy with other policies,

5. Compressing the resulting system authorizations for distribution and storage,

6. Distribution of system authorizations, and

7. Storage of system authorizations.

8. Choosing the proper response when queried.

The minimal capabilities of nodes necessarily requires that many of these tasks be performed at

the gateway. Additionally, while the administrator has access to the gateway, system authorizations

are distributed to the nodes via wireless communications. The gateway, therefore, is the sole node

in the system that performs tasks 1 through 5. These tasks include the original WASL expression

of the policy, the compilation of the policy, and the management of the tasks related to establishing

a secure basis for interactions with external networks’ nodes.

Task 6 begins at the gateway, but is also shared by every node in the WSN. It is expected that

many nodes will receive data and system authorizations to be retransmitted to other nearby nodes.

Each node must store at least those system authorizations that are pertinent to its own operations

or data accesses; this is expressed in task 7.

Tasks 7 and 8 could be implemented in two ways. One is to have a node store every system

authorization. The other is to store only those system authorizations related to objects maintained at

the node. The following discussion addresses the options. In either case, all the system authorizations

must be distributed throughout the WSN so the nodes have all the system authorizations they need.

For the first alternative an obvious impact is the use of a node’s memory. Storing all authoriza-

tions requires significantly more memory but has the benefit of mitigating a class of denial of service

attacks; when a node has access to every system authorization it determines whether to respond to or

forward a query. The assumption is that nodes ignore queries by entities not specifically authorized

by the security policy, thus reducing the number of query transmissions within the WSN at the cost

of increased memory usage and slightly more computation by a node.

The second alternative reduces the memory required at each node, potentially significantly,

depending on the number of authorizations and the scheme used for system authorization represen-

tation. This decision, however, means each node will forward any queries intended for another node

which may result in a much larger energy expenditure due to the forwarding of unauthorized queries.
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Every node performs task 8—every query is evaluated with respect to the system authorizations

prior to the generation of a system response. For authorized queries, the queried node performs the

appropriate computations and/or transmissions in response to the query as appropriate. Generally it

is expected that answers to queries are routed to the gateway for transmission to inter–network nodes

as appropriate because nodes have a very limited effective transmission range. It is possible, however

for an inter–network node to receive the answer directly from another node. Queries are assumed to

be routed to their intended destination where they are compared to system authorizations.

3.2 WASL: The Language

The above description of the targeted network establishes a frame of reference for policy lan-

guage design. Section 3.2.1 presents the grammar and syntax and is followed by respective descrip-

tions of the semantics of terms, relations, and rules in Sections 3.2.2, 3.2.3, and 3.2.4. Section 3.2.5

discusses the process of compilation.

3.2.1 Grammar. A detailed specification of WASL grammar with accepted inputs is

presented in Table 11. This grammar specifies all the inputs that can be parsed by the WASL

compiler. Courier font in the table identifies terminal symbols while italics identifies nonterminals.

Alternatives are captured within square brackets with options separated by the vertical bar. A

question mark (?) following the brackets of an alternative identifies an optional entry, a superscript

asterisk (∗) identifies any number of (zero or more) sequential appearances of the alternative, and a

superscript plus sign (+) identifies there are one or more appearances. The terminal str is specified

such that any number of any characters may be used, with the exceptions of newline symbols and

the period (.). str terminates with a period.

A policy expressed in WASL begins with begin and ends with end;. Additionally, every state-

ment is terminated with the semicolon (;). Just because a program can be parsed does not guarantee

the input is acceptable, but grammatical requirements guarantee a structure that can be analyzed

for proper semantics as described in other sections.

A convention adopted in this paper but not mandated by the grammar is to use terms beginning

with a capital letter for constants. Variable terms’ first characters are lowercase.

3.2.2 Declarations of Terms. Every WASL term is of an IdType of role, level, leveltype,

actor, group, subject, target, object, kind, or action. As the hierarchy shown in Figure 5 illustrates,

the subject and group types specialize the actor and, similarly, the kind and object specialize target.

System entities include both actors and targets. The † indicates entity terms are supertypes

that cannot be instantiated while the ‡ identifies actor and target terms supertypes that can be
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Table 11: WASL Grammar

Element → Construction

Policy → begin [ Stm ; ]∗ end;

Stm → [ IdDecl | RelStm | ErrorStm | RuleStm ]

IdDecl → [ const | var ] [ action | actor | group
| kind | level | leveltype | object | role | subject | target |
] id

ErrorStm → error(str)

RelStm → [
act( id , id , [ + | - ]? id [ , id ]+ )

| active( id , id )

| auth( id , id , [ + | - ]? id [ , id ]∗ )

| cando( id , id , [ + | - ]? id )

| dirin( id , id )

| do( id , id , [ + | - ]? id )

| equals( id , id )

| in( id , id )

| inlevel( id , id )

| levelgeq( id , id )

| levelorder( id , id )

| leveltype( id , id ) ]

RuleStm → Exp => RelStm | ErrorStm

Exp → [
true

| Exp [ & | | ] Exp
| [ - ]? ( Exp )

| [ + | - ]? RelStm ]

id → [ a – z | A – Z ][ a – z | A – Z | 0 – 9 ]∗

str → (∼ [ \n | \r | . ])∗ [ . ]

Figure 5: Types of Terms (Identifiers) in WASL
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instantiated but are restricted to variable terms (e.g., a const target declaration is an error). The

special subtype of action (SIGNEDACTION) is not shown in the figure but attaches a unary operator

of + or − to the action within an AuthType statement to signify the given relationship as a positive

(permitted) or negative (disallowed) authorization.

The following restrictions provide unambiguous semantics for terms.

• Terms may be declared as either constants or variables.

• Term labels begin with an alpha character but contain any number of alpha–numeric characters.

• No label in a policy may be defined more than once.

• An actor term is always a variable, appearing only in relation expressions (see Section 3.2.4).

Subject and group terms are the constants of this type.

• A declared role must be a constant.

• Variable terms may appear only within rules.

3.2.3 Relations. Twelve relations further develop the policy by giving context to the terms

and their types. Relations’ semantics are defined according to the in–order parameter requirements

identified in Table 12. In this table the symbol ∗ indicates the associated set may be empty while

the + identifies a necessarily non–empty set. The discussion below uses the following labels as

representatives of the given types: actor c, subject s, group g, target t, object o, kind k, level l,

leveltype lt, action a, and signed action ±a (representing the expression +a or −a). A term that can

be an actor or target (or any of their subtypes) is identified as e while the terms (id) that can be

of any type are x1 and x2.

• act(c,t,±a,{r}+) specifies discretionary access controls with the additional requirement that

each role in {r} be active.

• active(s,r) defines role r as active for s.

• auth(c,t,±a,{r}∗) expresses system–authorized access—the system authorizations.

• cando(c,t,±a) is used to express discretionary access controls; c (or each member of c) is

allowed (forbidden) to perform a on t.

• dirin(e,g|k) defines e as an immediate member of g or k.

• do(c,t,±a) is used to express mandatory access controls; c (or each member of c) is permitted

to perform ±a on t based on a set of rules.
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Table 12: WASL Relation Term Requirements

Relation (Ordered Term Types)

act (actor, target, signedaction,

{role}+)

active (subject, role)

auth (actor, target, signedaction,

{role}∗)
cando (actor, target, signedaction)

dirin (entity, group or kind)

do (actor, target, signedaction)

equals (id, id)

in (entity, group or kind)

inlevel (entity, level)

levelgeq (level, level)

levelorder (level, level)

leveltype (level, leveltype)

• equals(x1,x2) appears only in the conditional expression of rules and identifies that x1 is the

same term as x2.

• in(e,g|k) defines e as a member of g or k, although not necessarily an immediate member.

• inlevel(e,l) defines e as being in security level l.

• levelgeq(l1,l2) appears only in the conditional expression of rules and identifies that l1 is at

the same or a higher security level than l2.

• levelorder(l1,l2) defines l2 as the next lower security level than l1.

• leveltype(l1,lt) defines l2 as the lt type of security level.

Level ordering is different than entity grouping since security levels have a strictly controlled

hierarchy. An actor or target may be identified as indirectly belonging to a group or kind (using in)

while applying the levelorder statement indicates the hierarchy of levels. This, along with a check

for loops in the level ordering during compilation, ensures a partial ordering of the security levels.

Evaluation of the relation levelgeq, a relation that appears only in expressions (cf. Section 3.2.4),

checks levelorder entries to determine whether they are true or false.

The error statement is similar to a relation statement, but is unique because it relates no

terms. It does, however, have a text field that provides feedback regarding a problem in the policy

(e.g., error(DoStm conflict for do(Subject3,Obj2,-Write)).).

3.2.4 Rules. The rule construct is fundamentally intended to capture a policy’s mandatory

authorizations. For example, it is used to express the relationships between subjects, objects, levels,

and actions necessary to sustain the prescribed definition of security. Rules may also be used by the
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security administrator, however, to quickly define relationships that authorize or prohibit certain

actions.

Rules consist of a relation expression re (the condition) and a relation or error statement rs (the

consequent). Any re is a boolean expression of zero or more relations linked together and operated

upon by logical operators; unary operators are + (plus) and − (minus) while binary operators are

& (and) and | (or). An empty re implies true. Relations r that appear in re may have variables

and constants as terms or both.

A relation expression +r, where r is a constant–only relation in re, evaluates to true if and

only if it appears in the policy; it evaluates to false otherwise. −r yields the opposite result. Any

r in re with variable terms cannot be evaluated true due to the variables, but it can be evaluated

false if the existing constants do not match the patterns present in the statements of the policy.

This handling of relations is the basis for evaluating binary expressions, with & and | providing the

logical conjunction and disjunction, respectively.

Resolving rules is accomplished by substituting constant terms from the policy for the rules’

variables, ensuring the typing of terms is maintained. The variable–free statement rs of a rule is

added to the policy when re of the same rule evaluates to true.

Several requirements are associated with rules:

• A rule with an auth statement in the condition must have an auth statement as the consequent.

A rule structured this way is used only during composition due to the semantics of the various

relation statements.

• The consequent of a rule must be either an authorization type (do, cando, act, or auth) or an

error. All other relations are explicitly specified or inferred during compilation.

3.2.5 Compilation. The WASL compiler performs two functions: compilation of the ex-

pression of the policy in WASL (a policy program) and policy composition. Compilation leads to the

complete delineation of system authorizations with constant–only terms. Composition is addressed

in Chapter V.

Compilation of a WASL program generates a set of system authorizations or auth statements.

Compilation includes lexical analysis, parsing, semantic analysis, and code generation. The textual

input is confined to the grammar specified in Table 11 and the output, consistent with the same

grammar, includes the original input, statements deduced from the input, and the generated set of

authorizations. The sequential steps of compilation follow.
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1. Analyze the input for proper grammatical structure and store in an intermediate representation

useful for program analysis (lexical analysis and parsing).

2. Bind each term to its declaration to ensure, for example, Node32 always refers to const subject

Node32 (semantic analysis, part 1).

3. Resolve types; for example, parsing identifies the subject in a do statement as an actor whereas

it may actually be a subject or group according to its binding. (semantic analysis, part 2).

4. Check structural requirements; for example, a rule must have as its consequent either an error

or an authtype statement, security levels must be arranged in a partial order, and entities must

not be in multiple security levels within a given partial order (semantic analysis, part 3).

5. Analyze relations to determine any possible derived in, inlevel, or authorization relations

(semantic analysis, part 4).

6. Identify rules that do not generate system authorizations and iterate through the set of variables

they contain.

(a) Identify and iterate through constants matching the variable’s type.

i. Iterate through rules requiring a substitution, replace the variable with the constant

to create a new rule.

ii. Simplify and evaluate the condition of the created rules.

iii. Add to the program consequents corresponding to conditions that are true.

iv. Store the rules to replace the next variable if further constant–for–variable substitu-

tions are required.

(b) Repeat with the next variable in Step 6 using the stored rules from Step 6(a)iv.

7. If any relations have been added to the program, repeat Step 6.

8. Identify rules that generate system authorizations and perform the iterations of Step 6 using

these rules.

Policies may express different types of authorizations using a variety of terms: mandatory

accesses, discretionary accesses, access control lists, and rule–based accesses are just a few. WASL

relations model these using act, do, and cando relations. The generation of system authorizations

relies on the proper expression of security rules to specify how the interaction of these constructs

results in system authorizations.

Compilation thus results in the desired set of system authorizations identifying the authoriza-

tions of the system. This complete expression of system authorizations is sufficient for a system
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operating independently of all other systems. However, as soon as interactions with external net-

works is necessary, policy composition is required.

3.3 Summary

WASL provides a structure for specifying arbitrary security policies. The target network for

these policies shapes the language requirements and identifies the need for a complete delineation of

system authorizations.

The result is a language with a precise grammar, defined semantics for terms and relations, and

the provision for rules that are used to make assertions about groups of entities and their security

levels as well as related authorizations. Compilation steps expand a specified policy to include the

desired complete set of system authorizations consistent with that specification.
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IV. Specifying Policies in WASL

Policy specification using WASL is straightforward and several examples are presented in this

chapter. The policies and policy types developed herein are only a sampling of the policies that

could be generated using WASL, but are sufficient to demonstrate the expressiveness of the language.

Three specific types of policy are used for demonstration purposes: Bell–LaPadula (BLP), Biba, and

the Chinese Wall (CW).

Section 4.1 develops the fundamental constructs for implementing the requirements of the BLP

confidentiality model, Biba’s integrity model, and the CW conflict of interest model. Section 4.2

demonstrates how to use WASL to specify policies of the various types. Hybrid policies are specified

in the same manner as in Section 4.2 with rules constructed as illustrated in Section 4.3. The

suitability of policies specified in WASL is discussed in Section 4.4 where compilation times and

policy sizes are discussed. Conclusions are contained in Section 4.5.

4.1 BLP, Biba, and CW Rules in WASL

Translation from BLP requirements into WASL rules is straightforward. BLP discretionary

authorizations for reading and writing translate to cando(s,o,a) statements. These BLP rules can

be specified in two WASL rules.

-- enumerate system authorizations to read: discretionary right plus "dom" relation

cando(s, o, R) & inlevel(s, l1) & inlevel(o, l2) & levelgeq(l1, l2) => auth(s, o, R);

-- enumerate system authorizations to write: discretionary right plus "dom" relation

cando(s, o, W) & inlevel(s, l1) & inlevel(o, l2) & levelgeq(l2, l1) => auth(s, o, W);

It is clear from these rules that no system authorization (auth) can be produced without having

a discretionary authorization (cando) as well as the proper security level relationships. Conversely,

if these conditions are met, the system authorization will be added.

WASL–Biba also has two requirements, each a dual of a WASL–BLP rule above (without

discretionary authorizations, however). Again no system authorization (auth) is generated unless

the integrity levels of the subject and object are related appropriately. If, however, the integrity

level relationship is as required, the system authorization will be entered into the system.

-- enumerate system authorizations to read

inlevel(s, l1) & inlevel(o, l2) & levelgeq(l2, l1) => auth(s, o, R);

-- enumerate system authorizations to write

inlevel(s, l1) & inlevel(o, l2) & levelgeq(l1, l2) => auth(s, o, W);

Specifying CW policies in WASL is more involved than BLP or Biba. WASL identifies when

some combination of terms satisfies a given condition (reflecting an existential quantifier). WASL

does not, however, directly provide identifying terms that satisfy a condition for a universal quantifier.
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This appears in the CW condition to write (“for all unsanitized objects O′, S can read O′ ⇒
CD(O′) = CD(O)”).

To generate authorizations based on the universal quantifier using the WASL–CW write rule

as an example:

1. Negate the requirement,

2. Enumerate instances meeting the negation, and

3. Use the absence of a negated instance to generate system authorizations for the related access

right.

The application of this procedure considers the partial CW requirement stating that s may write o

if, “for all unsanitized objects o′, s can read o′ ⇒ CD(o′) = CD(o).” The negation can be expressed

in the following equivalent statements, including the translation into WASL, that identify when s

may not write o.

• NOT (for all unsanitized objects o′, s can read o′ ⇒ CD(o′) = CD(o))

• For any unsanitized object o′, NOT (s cannot read o′ OR CD(o′) = CD(o))

• For any unsanitized object o′, s can read o′ AND CD(o′) 6= CD(o))

• -in(o2,CDSan) & do(s,o2,R) & ((in(o1,k1) & dirin(o1,CD))

& (in(o2,k2) & dirin(k2,CD)) & -equals(k1,k2))

An additional complication in implementing CW in WASL is the use of historical data to limit

accesses to objects according to previous subject accesses. In a WSN, that a subject has accessed a

given object may take a long time to propagate throughout the WSN. A subsequent access by that

subject, while prohibited by CW rules, may be permitted because the system is not yet aware of the

previous event. For this reason, WASL–CW lists permitted authorizations and prohibits all others.

Initial authorizations are expressed in the policy specification as do(s,o,a).

The CW read requirement in WASL is captured in a single rule using variable objects o1 and

o2, a variable kind k1, and a variable subject s.

-- authorized Reads

dirin(o1, CDSan) | (do(s, o2, R) & in(o1, k1) & in(o2, k1) & dirin(k1, CD))

=> auth(s, o1, R);

Using the same variables names as in read authorizations, plus the kind variable k2, the

following WASL write rules enforce CW requirements.
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-- unauthorized writes

-in(o2, CDSan) & -in(o1, CDSan)

& ((in(o1, k1) & in(o2, k2) & dirin(k1, CD) & dirin(k2, CD) & -equals(k1, k2))

& do(s, o2, R))

=> do(s, o1, -W);

-- authorized Writes

-do(s, o1, -W) & auth(s, o1, R)

=> auth(s, o1, W);

Note that the rule determining unauthorized writes is slightly different from that derived above.

It will not generate a “disallowed write” for a “sanitized” object. It is assumed that appropriate

precautions have been taken that ensure sanitized data is indeed sanitized. In addition, the last

rule, -do(s,o1,-W) & auth(s,o1,R) => auth(s,o1,W), requires the results of the other rules prior to

compilation. This policy program is, therefore, recompiled after this rule is added to the previously

compiled policy program.

4.2 Creating Policies with WASL

This section expands on the description of the WASL rules in Section 4.1 to specify partic-

ular BLP–, Biba–, and CW–compliant policies. Section 4.2.1 develops two distinct BLP systems,

Section 4.2.2 specifies a Biba system, and Section 4.2.3 specifies a CW system.

4.2.1 BLP in WASL. This section walks through the creation of the specification for

system J and K, both consistent with the BLP definition of security. Elements of these systems

are used in later sections to demonstrate hybrid confidentiality and integrity models and policy

composition.

System J employs a confidentiality–oriented security policy following the BLP model. It has

two groups of subjects, JGS and JGU corresponding to subjects operating at security classification

level S (classified secret) and U (unclassified), respectively. There is one subject in each group, JS1

and JS2, respectively. A graphical depiction of the subjects and their relations is in Figure 6. A

similar relationship captures two object kinds and two objects in Figure 7. Solid lines in Figures 6,

7, and 8 indicate explicitly specified relationships, dashed lines identify relationships deduced by the

compiler, and arrows indicate the entities represented by a particular variable type.

The high (JS) and low (JU) sides of J work together to enforce the policy. Figure 8 integrates

Figures 6 and 7 to show the associations between the subjects and objects as well as the relationship

between the high and low sides of the system. The one new relation, levelorder, associates level

JU elements with level JS elements and provides the information necessary for interpreting levelgeq,

thus implementing the dom relation.
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(a) ‘S’ Side (b) ‘U’ Side

Figure 6: Subjects for J

(a) ‘S’ Side (b) ‘U’ Side

Figure 7: Objects for J

Figure 8: Structure and Components of J
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To complete the specification of J, the code in the above figures is augmented by discretionary

rights and the two rules that express BLP mandatory authorizations. The security administrator

of J uses a rule to generate all subject–object–action combinations as discretionary authorizations.

This and the BLP rules are, with comments:

-- every subject has discretionary rights to all objects

true => cando(s,o,a);

-- the two BLP--enforcing rules

cando(s, o, R) & inlevel(s, l1) & inlevel(o, l2) & levelgeq(l1, l2)

=> auth(s, o, R);

cando(s, o, W) & inlevel(s, l1) & inlevel(o, l2) & levelgeq(l2, l1)

=> auth(s, o, W);

Adding the following code to the policy specification establishes a particular leveltype and

associates the security levels with that type. This has little impact when the system operates

independently of other networks, but is important for composition addressed later.

-- establish a leveltype and make associations

const leveltype BLP;

leveltype(JS, BLP); leveltype(JU, BLP);

Compiling the above code yields the discretionary authorizations below. The BLP rules specify

that not all of the discretionary rights are permissible as system authorizations, so the resulting set

of auth statements has fewer members than the set of cando statements.

cando(JS1, JO1, R); cando(JS1, JO1, W);

cando(JS1, JO2, R); cando(JS1, JO2, W);

cando(JS2, JO1, R); cando(JS2, JO1, W);

cando(JS2, JO2, R); cando(JS2, JO2, W);

auth(JS1, JO1, R); auth(JS1, JO1, W);

auth(JS1, JO2, R); auth(JS2, JO1, W);

auth(JS2, JO2, R); auth(JS2, JO2, W);

Using identical processes yields a similar system K. This system has fewer discretionary au-

thorizations. The policy code is provided with comments in Figure 9. Compiling this program adds

the statements shown in Figure 10a to the original program—the inlevel statements generated as

a result of statement analysis while the cando authorizations follow from the encoded rules. System

authorizations presented in Figure 10b are generated by the BLP rules.

For systems J and K it is clear that despite any discretionary authorizations, a system autho-

rization is not added unless the relative security levels of the subject and object comply with BLP

rules. Equally clear is that system authorizations are not added unless a matching discretionary

authorization is also in the system. Thus, BLP requirements are enforced by the WASL rules.

4.2.2 Biba in WASL. System L has an integrity–focused policy following the Biba model of

integrity. It has two groups of subjects and two kinds of objects, each corresponding respectively to
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begin

-- declare subjects, groups, objects, kinds,

-- and actions

const subject KS1; const subject KS2;

const group KGS; const group KGU;

const object KO1; const object KO2;

const kind KKS; const kind KKU;

const action W; const action R;

-- declare levels/establish hierarchy

const level KS; const level KU;

levelorder(KS, KU);

-- establish leveltype and make associations

const leveltype BLP;

leveltype(KS, BLP); leveltype(KU, BLP);

-- relate subjects-groups and groups-levels

dirin(KS1, KGS); dirin(KS2, KGU);

inlevel(KGS, KS); inlevel(KGU, KU);

-- relate objects-kinds and kinds-levels

dirin(KO1, KKS); kindofdirin(KO2, KKU);

inlevel(KKS, KS); inlevel(KKU, KU);

-- establish a leveltype/make associations

const leveltype K;

leveltype(KS, K); leveltype(KU, K);

-- declare subject, object, action,

-- and level variables

var subject s; var object o; var action a;

var level l1; var level l2;

-- specify discretionary accesses

cando(KS1, KO2, W);

true => cando(s, KO1, R);

true => cando(KS2, KO2, a);

-- incorporate the two BLP rules

cando(s, o, R) & inlevel(u, l1)

& inlevel(o, l2) & levelgeq(l1, l2)

=> auth(s, o, R);

cando(s, o, W) & inlevel(s, l1)

& inlevel(o, l2) & levelgeq(l2, l1)

=> auth(s, o, W);

end;

Figure 9: Specification of K

inlevel(KS1, KS); inlevel(KS2, KU);

inlevel(KO1, KS); inlevel(KO2, KU);

cando(KS1, KO1, R); cando(KS2, KO2, R);

cando(KS2, KO1, R); cando(KS2, KO2, W);

a: Statements Deduced During Compilation

auth(KS1, KO1, R);

auth(KS2, KO2, W);

auth(KS2, KO2, R);

b: Generated System
Authorizations

Figure 10: K Compilation Results
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subjects and objects at integrity level H (high integrity) and L (low integrity). There is one subject

in each group and one object of each kind.

Functioning as the dual of BLP–oriented systems, L is constructed in a manner that correlates

with J as presented in Figures 6–8. Entity structures and relationships are identical but the rules

differ most noticeably in the absence of discretionary authorizations. A graphical representation of

the constants and relations of L with the corresponding WASL code in Figure 11.

Figure 11: Construction of L

Repeating the WASL rules enforcing Biba’s model, the following code is added to L.

var subject s; var object o;

var level l1; var level l2;

inlevel(s, l1) & inlevel(o, l2) & levelgeq(l2, l1) => auth(s, o, R);

inlevel(s, l1) & inlevel(o, l2) & levelgeq(l1, l2) => auth(s, o, W);

Authorizations for L are generated during compilation:

auth(LS1, LO1, R); auth(LS1, LO1, W);

auth(LS1, LO2, W); auth(LS2, LO1, R);

auth(LS2, LO2, R); auth(LS2, LO2, W);

None of the subjects at the low level may write to objects at the high level and subjects at the high

level are not authorized to read low level objects. This demonstrates the system maintains integrity

by Biba’s definition.
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4.2.3 Chinese Wall in WASL. This section introduces a WASL–encoded example of the

Chinese Wall (CW) and discusses how a Chinese Wall security policy could be implemented in a

WSN. The primary classifications for CW systems involve the categorization of data objects. Conflict

of interest classes (COIs) and company datasets (CDs) compartmentalize data and so constitute two

kinds in the WASL specification.

System P implements the COI and CD kinds with two COIs and four datasets. Figure 12a

graphically depicts these kinds and provides the corresponding WASL code. Two objects in each

CD are shown with associated code in Figure 12b while eight subjects and their initial accesses are

presented in Figure 12c. Sanitized data resides in the CD CDSan.

a: COIs and CDs for P

b: Objects with CDs for P

c: Subjects with Initial Read Accesses for P

Figure 12: Initial Relationships in System P

The first two CW rules,
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-- authorized reads

dirin(o1, San) | (do(s, o2, R) & in(o1, k1) & in(o2, k1) & dirin(k1, CD))

=> auth(s, o1, R);

-- unauthorized writes

-in(o2, CDSan) & -in(o1, CDSan)

& ((in(o1, k1) & in(o2, k2) & dirin(k1, CD) & dirin(k2, CD) & -equals(k1, k2))

& do(s, o2, R))

=> do(s, o1, -W);

are added to the code segments in Figure 12 for compilation yielding the mandatory negative autho-

rizations (do(u,o,-W) statements), the read accesses in Figure 13, and system authorizations (auth

statements) in Figure 14.

do(S1, D3, -W); do(S1, D4, -W); do(S1, D5, -W); do(S1, D6, -W);

do(S1, D7, -W); do(S1, D8, -W);

do(S2, D1, -W); do(S2, D2, -W); do(S2, D3, -W); do(S2, D4, -W);

do(S2, D5, -W); do(S2, D6, -W); do(S2, D7, -W); do(S2, D8, -W);

do(S3, D1, -W); do(S3, D2, -W); do(S3, D5, -W); do(S3, D6, -W);

do(S3, D7, -W); do(S3, D8, -W);

do(S4, D1, -W); do(S4, D2, -W); do(S4, D3, -W); do(S4, D4, -W);

do(S4, D5, -W); do(S4, D6, -W); do(S4, D7, -W); do(S4, D8, -W);

do(S5, D1, -W); do(S5, D2, -W); do(S5, D3, -W); do(S5, D4, -W);

do(S5, D7, -W); do(S5, D8, -W);

do(S6, D1, -W); do(S6, D2, -W); do(S6, D3, -W); do(S6, D4, -W);

do(S6, D7, -W); do(S6, D8, -W);

do(S7, D1, -W); do(S7, D2, -W); do(S7, D3, -W); do(S7, D4, -W);

do(S7, D5, -W); do(S7, D6, -W);

do(S8, D1, -W); do(S8, D2, -W); do(S8, D3, -W); do(S8, D4, -W);

do(S8, D5, -W); do(S8, D6, -W);

Figure 13: Derived Write Accesses in P

auth(S1, D1, R); auth(S1, D2, R); auth(S1, D9, R);

auth(S2, D1, R); auth(S2, D2, R); auth(S2, D5, R); auth(S2, D6, R); auth(S2, D9, R);

auth(S3, D3, R); auth(S3, D4, R); auth(S3, D9, R);

auth(S4, D3, R); auth(S4, D4, R); auth(S4, D5, R); auth(S4, D6, R); auth(S4, D9, R);

auth(S5, D5, R); auth(S5, D6, R); auth(S5, D9, R);

auth(S6, D5, R); auth(S6, D6, R); auth(S6, D9, R);

auth(S7, D7, R); auth(S7, D8, R); auth(S7, D9, R);

auth(S8, D7, R); auth(S8, D8, R); auth(S8, D9, R);

Figure 14: System Authorizations for P After First Compilation

Compilation is performed again after adding the last CW rule:

-do(s, o1, -W) & auth(s, o1, R) => auth(s, o1, W);

The authorizations resulting from this compilation include the system authorizations specifying write

accesses in Figure 15.

Thus, no subject may read objects in multiple CDs within the same COI. Similarly, a subject is

not authorized to write to an object if it has had access to an object in another unsanitized dataset.

Such illegal authorizations cannot be generated due to the WASL rules enforcing CW constraints.
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auth(S1, D1, W); auth(S1, D2, W); auth(S1, D9, W);

auth(S2, D9, W);

auth(S3, D3, W); auth(S3, D4, W); auth(S3, D9, W);

auth(S4, D9, W);

auth(S5, D5, W); auth(S5, D6, W); auth(S5, D9, W);

auth(S6, D5, W); auth(S6, D6, W); auth(S6, D9, W);

auth(S7, D7, W); auth(S7, D8, W); auth(S7, D9, W);

auth(S8, D7, W); auth(S8, D8, W); auth(S8, D9, W);

Figure 15: Additional System Authorizations for P After Second Compilation

4.3 Rule Construction for Hybrid Policies

CW is considered a hybrid policy because it has elements reflecting the ideas of both confiden-

tiality and integrity. Using WASL, however, the principles of multiple policy types can be expressly

enforced. This section demonstrates the creation of rules for BLP–Biba and BLP–CW combinations.

Developing policy rules that enforce a hybrid BLP–Biba policy is simple because there is one

rule specifying the requirements for read authorizations and one for write. The conjunction of the

rules associated with the relevant action is almost all that is necessary with an exception being the

explicit association of referenced security levels with either BLP or Biba.

The following are the rules for the BLP–Biba system.

-- enumerate system authorizations to read

leveltype(l1, BLP) & leveltype(l3, Biba) & cando(s, o, R) & inlevel(s, l1)

& inlevel(o, l2) & levelgeq(l1, l2) & inlevel(s, l3) & inlevel(o, l4)

& levelgeq(l4, l3)

=> auth(s, o, R);

-- enumerate system authorizations to write

leveltype(l1, BLP) & leveltype(l3, Biba) & cando(s, o, W) & inlevel(s, l1)

& inlevel(o, l2) & levelgeq(l2, l1) & inlevel(s, l3) & inlevel(o, l4)

& levelgeq(l3, l4)

=> auth(s, o, W);

The rules thus require any subjects and objects in the system to have an association with both

a BLP security level and a Biba security level if they are to appear in any system authorizations. In

addition, the desired relationship between the levels of both systems must be appropriately met for

the system authorization to be granted.

BLP and CW can similarly be combined. Using the following WASL rules as the only means

for generating read and write, system authorizations are simultaneously consistent with the BLP

and CW axiomatic systems.

-- enumerate system authorizations to read

(cando(s, o1, R) & inlevel(s, l1) & inlevel(o1, l2) & levelgeq(l1, l2))

& (in(o1, CDSan) | (do(s, o2, R) & in(o1, k1) & in(o2, k1) & dirin(k1, CD)))

=> auth(s, o1, R);

-- enumerate mandatory negative write
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-- authorizations

-in(o2, CDSan)

& ((in(o1, k1) & in(o2, k2) & dirin(k1, CD) & dirin(k2, CD) & -equals(k1, k2))

& do(s, o2, R))

=> do(s, o1, -W);

-- enumerate system authorizations to write

cando(s, o1, W) & inlevel(s, l1) & inlevel(o1, l2) & levelgeq(l2, l1)

& in(o1, CD) & auth(s, o1, R) & -do(s, o1, -W)

=> auth(s, o1, W);

Combining Biba and CW systems is not presented as it is a trivial adaptation of this BLP–CW

combination. System generation follows the same patterns as shown above for the individual BLP,

Biba, and CW policy implementations with the difference being the simultaneous use of two systems.

Assurance of security is again by definition and can be proven (proofs are provided in Chapter VI)

for axiomatic policy types such as those discussed above.

4.4 Suitability of WASL for a WSN

This section examines implementation issues and shows it is reasonable to transmit and employ

the system authorizations of composed policies within a WSN. The data in this section was generated

using a Java Compiler Compiler parser generator (JavaCCTM Version 4.0) for WASL parsing and

grammar checking and an abstract syntax tree for semantic checking and further manipulations.

Information regarding the syntax tree methodology used can be found in [App98]. Policy composition

is presented in Chapter V, but the results are presented here as well.

A WSN may be composed of hundreds, if not thousands of nodes. The number of objects in the

system could be equally large, with some data available on a per–node basis. The possible actions

that must be controlled by a policy are expected to be small, but a BLP policy like J for 1000 nodes

and 1000 objects with 6 actions, has 6,000,000 potential authorizations. If a unique binary number

identifies each authorization, the representation requires nearly 3 bytes to express (222 < 6,000,000

< 223, so 23 bits per authorization are required).

Additionally, a policy of this size would be prohibitively large to compile. Nodes are likely

in one or more groups, so there would be 1000 or more statements capturing these relationships.

Similarly, the 1000 objects would be of one or more kinds, leading to at least 1000 more statements.

A simple rule with two variables, one of type object and one of type subject, and two relation

expressions; compilation requires up to 1000 × 1000 term substitutions and the evaluation of the

same number of expressions. As the size of the policy increases, the worst case scenario is a factorial

expansion of the required compilation time. Memory required to store this information grows at a

similar rate.
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Representing the policy via rules at each node is an equally unappealing option, given the

characteristics just described. Either the nodes would be required to store membership and other

information about entity relationships or much of this information would be required for each query.

The cost in memory, computational requirements, or transmission bandwidth for this is prohibitive.

Separate node identifiers, however, are unlikely. More probable is a limited number of node groups

and kinds of data manipulated. Using WASL to specify system authorizations by group and/or kind

significantly decreases the volume of information required to determine whether or not a request is

authorized.

Improvements on the proposed process of policy system authorization distribution, however,

can also be made. Data compression methods, for example, decrease the bandwidth required for

policy transmission even further as it reduces memory consumption at the nodes. This being so, the

following alternative approach takes advantage of WSN characteristics.

Consider a network with thousands of nodes but only three subject groups, five object kinds,

and four possible actions. There are now only sixty possible authorizations—a policy size that, using

the simplistic binary system described above (one byte per authorization with 60 bytes maximum),

is a reasonable size for transmission to and storage at a node.

Policy compilation speed trials have been performed on a notebook computer with 1300 MB

of memory and an AMD Athlon 3400 processor running at 2.2 GHz. Each network had two groups,

two kinds, two levels, and two actions with a varying number ||S|| of subjects (where ||S|| is the

size of set S) and ||O|| of objects uniformly distributed across groups and kinds as appropriate, with

the latter two also uniformly distributed across levels. The two actions are read and write while the

groups (subject types) and kinds (object types) correspond to secure and unsecure confidentiality

levels. A dirin statement associates each element of S with exactly one group while another identifies

objects in O as exactly one kind. The two rules identified in the examples above

cando(s, o, R) & inlevel(s, l1) & inlevel(o, l2)

& levelgeq(l1, l2) => auth(s, o,R);

cando(s, o, W) & inlevel(s, l1) & inlevel(o, l2)

& levelgeq(l2, l1) => auth(s, o, W);

specify the confidentiality requirements of the BLP model [BL75].

When using true => cando(s,o,a) to generate grant all discretionary accesses for the two–

action system, 2 × ||S|| × ||O|| term substitutions replace the action, subjects, and object variables

to generate 2 × ||S|| × ||O|| discretionary authorizations. Next, order ||S|| × ||O|| × 2 × 2 term

substitutions replace the variables s, o, l1, and l2 with the subjects, objects, and security levels in

the system.
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Execution times, however, grow at a rate much greater than ||S|| × ||O||. Table 13 contains

the compilation times with the 95% confidence interval for a two–level BLP security system with

2 actions, 5 objects, and a number of subjects ranging from 10 to 1000. System authorizations

are based on discretionary authorizations that provide all possible authorizations for every subject–

object pairing using the rule true => cando(s,o,a) and the two BLP mandatory access control rules.

Each compilation was run 10 times with interfering processes on the laptop kept to a minimum.

Runs have also been completed for a variety of other combinations of subjects and objects including

a run with 60 objects and 60 subjects requiring 233 seconds and another with 50 objects and 100

subjects requiring 533 seconds.

Table 13: 5–Object BLP Policy Compilation Times

# Subjects Compilation Time (sec.)

10 0.03 ± 0.01

20 0.05 ± < 0.01

30 0.11 ± < 0.01

50 0.21 ± 0.01

70 0.51 ± 0.01

100 0.99 ± 0.04

200 2.01 ± 0.05

300 8.20 ± 0.08

500 20.01 ± 0.24

700 63.633 ± 0.72

1000 358.71 ± 1.75

N/A1 0.02 ±0.01
1 Authorizations are identified by group with a five groups. The number of subjects can grow without
impact to the compilation time.

Nodes in a WSN are unlikely to be managed individually, with distinct authorizations per node.

Groups of nodes are expected to perform similar functions throughout the WSN and authenticate

by type rather than individually. To match this expectation, test runs using rules focused on groups

rather than individual subjects were done. Compiling the policy for a WSN with 100,000 nodes

associated with five groups, with the same number of other parameters described for Table 13, but

focusing the rules on granting authorizations by group association and including only the relations

required by these rules, the compilation time is 0.02 seconds as shown in the table. Because the

particular subjects are not a factor given a constant number of groups, the number of nodes can be
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increased or decreased without affecting the compilation time or memory required for storage of the

policy.

Composition is an extension of policy compilation that is performed on the combination of two

previously–compiled policies. The non–system authorizations (mandatory and discretionary autho-

rizations) of each are removed and composition statements are added in preparation for processing.

The time required for composition may be significantly less than that for compilation, depending

primarily on the number of constants corresponding to the variables of the composition rules but also

on the number of relations interacting with the given rules. Table 14 shows the composition time for

extending low-level read access from a five–object, 10–subject system to similar five-object systems

with the listed numbers of subjects. The time requirements for extending low–level read access from

a five–object system (with varied numbers of subjects as listed) to a five–object, ten–subject system

is shown in Table 15.

Plain text representations of a 5 object×1000 subject policy (including all relation statements)

as described above requires 578 KB of memory when stored as plain text, but simplifying the

representation and representing the authorizations by group rather than by subject quickly reduces

the size to 458 bytes for the entire set of system authorizations. Assuming a given node interacts

with only three of the five objects, the storage of system authorizations at a node requires only 210

bytes of memory. While these are more reasonably sized for transmission to and storage on a node,

a representation using a binary code rather than text would result in further compression.

4.5 Conclusion

WASL is a policy language that can represent arbitrary policies and generate authorizations

consistent with such security models as Bell-LaPadula, Biba, or the Chinese Wall. This new language,

with its associated compiler, provides the foundation for a policy–enforcement system in which the

policy may be changed without modification of the enforcement mechanisms; this capability adds to

the flexibility and security of query–based WSNs.

The translation of requirements of the BLP, Biba, and Chinese Wall models into WASL code

has been demonstrated and the hybrid versions of these models are straightforward. To represent a

policy in WASL with the intended application in a WSN, the complete enumeration of authorizations

is necessary. This means that dependence on historical data, such as is required by the Chinese Wall,

must be removed. System authorizations consistent with the requirements of the Chinese Wall have

been generated using an initial state and rules that prohibit authorizations depend on unknown

future activities.
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Table 14: Times for Composition of a 5–Object, 10–Subject System with a 5–Object, X–Subject
System

# Subjects Composition Time (sec.)

10 0.05 ± 0.01

20 0.10 ± 0.03

30 0.11 ± < 0.01

50 0.20 ± 0.04

70 0.29 ± 0.03

100 0.41 ± 0.01

200 1.48 ± 0.04

300 3.46 ± 0.06

500 9.82 ± 0.12

700 18.95 ± 0.22

1000 38.69 ± 0.37

Table 15: Times for Composition of a 5–Object, X–Subject System with a 5–Object, 10–Subject
System

# Subjects Composition Time (sec.)

10 0.06 ± < 0.01

20 0.17 ± 0.08

30 0.25 ± 0.08

50 0.32 ± 0.01

70 0.57 ± 0.06

100 1.00 ± 0.01

200 5.04 ± 0.06

300 11.99 ± 0.11

500 38.75 ± 0.14

700 89.88 ± 0.47

1000 179.16 ± 0.59
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A straightforward implementation of a WASL system has been created to read, compile, and

compose security policies. The system is näıve in that it implements the algorithms described above

with few optimizations. Policies for these networks are specified in WASL and compiled. The

resulting system authorizations are combined using composition rules to yield new sets of system

authorizations that are compatible and consistent with the original security policies. System autho-

rizations are compressed to a reasonable size for transmission throughout a WSN and for storage on

a node.

Tests identify that policies with several objects and up to one thousand subjects/groups can be

compiled and composed with other policies on a notebook–class computer. As long as the number of

entities represented in the system is not excessive, the resulting policy can be reasonably transmitted

to and processed at a typical WSN node. The number of entities is a crucial measure because as they

increase, the time required for compilation increases factorially in the worst case while the space

required for policy storage increases linearly. Given a reasonable grouping of subjects, however,

policies for WSN’s with hundreds of thousands or millions of nodes can be compiled and effectively

implemented.
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V. Composition in WASL

Using WASL as described in Chapter III and the policies developed in Chapter IV, this chapter

focuses on the composition of policies using WASL. Composition is defined in Section 5.1 and then

demonstrated with examples in Section 5.2.

5.1 Defining Policy Composition

Composition in WASL uses WASL’s compilation procedures to merge multiple policies by

manipulating the policies and adding rules that provide cross–policy interactions. The concepts

presented here parallel some of those found in [GQ94] and [BdVS02].

Suppose there are independent systems A and B, in which subjects from one system need

to interact with objects from the other; policy composition ensures the security policies defined

individually within A and B are maintained while permitting additional authorizations so subjects in

A access objects in B and/or vice–versa. In such a system both the authorizations and prohibitions

in effect under isolated systems A and B must be preserved. A system that meets these initial

requirements is referred to as being compatible with the original. Additionally, the interaction of A

with B should be consistent, not leading to direct or indirect violations of either of the policies.

The compatibility requirement is partially met by a composition when all authorizations in a

policy are also in the composition’s resultant system authorizations. When a composition meets

this condition and, additionally, when every action that is disallowed by a policy is also disallowed

in the composition, compatibility is fully satisfied. Both of these conditions are met by requiring

any additions to system authorizations to have actors and targets from separate systems. Thus,

changes to a given system’s policy cannot be accomplished via composition. Consistency is achieved

when data flows prohibited in the individual policies are also prohibited in the composition. Direct

violations are addressed by the correctness description above. Indirect violations are prohibited by

ensuring a partial order of security levels between systems is established and maintained.

Consider the following example of an indirect violation. Suppose a subject s under policy A is

not permitted read access to object o (i.e., either the expression -auth(s,o,read) or auth(s,o,-read)

is true) as presented in Figure 16. After composition with policy B, s1 (under policy B) is autho-

rized to read o (auth(s1,o,read)) and write o1 (auth(s1,o1,write)). If s is authorized to read o1

(auth(s,o1,read)), this indirectly violates the policy for system A since s could read o data written to

o1 by s1. This situation cannot occur when security levels are properly ordered during composition.

This leads to the definition of secure composition adopted here, and reflect those identified

in [GQ94]:
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Figure 16: Unsecure Composition

Secure Composition: A composition of two security policies A and B, yielding

a security policy C is secure when the following hold simultaneously:

1. System authorizations for subjects under policy A (B) are unchanged in

policy C with respect to objects under policy A (B).

2. Authorizations in C not appearing in either A or B comply with the policy

restrictions of both policies A and B.

For an effective implementation in WASL, policies to be merged must include the system

authorizations, the other non–authorization relations, and the declarations of any terms included in

these authorizations. Rules generating authorizations during compilation must be removed during

composition, however, as they are useful only during compilation and could lead to undesired effects

during composition.

Consider an example of just such an undesired effect. Suppose the intent of a composition

of systems J and K is to permit subjects in K at level KS to read objects in J at level JU, but

to prohibit any access for subjects in K at level KU. If the security administrator for J used the

rule Rorig = true => cando(s,o,a) to generate the discretionary authorizations under a BLP policy

and this rule is not removed, the composition rules will permit the accesses expressly prohibited

if the intended discretionary accesses are Rnew = in(s,KS) & in(o,KU) => cando(s,o,R). Rorig will

generate an undesired discretionary authorization for every subject in K if not removed prior to

compilation.

The rules used for composition must maintain the security of the component policies. The

only way to ensure this is to require consistency of the system authorization–generating rules with

the component policy system authorization–generating rules. If the component policies implement

differing definitions of security a hybrid set of rules is required (cf. Section 4.3).
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The requirements for composition are:

1. Actors and targets in system authorizations generated by composition rules must come from

different systems.

2. Terms between policies must be unambiguous (i.e., a given term identifier must represent

exactly one term).

3. Except for system authorizations, authorization statements associated with one or the other

of the policies to be composed must not play a role in composition.

4. Composition rules generating system authorizations must be the same as those used for the

composition of the individual policies.

The steps to perform a composition that permit subjects in A access to objects in B are below.

When each of the required associations and rules are defined in advance, these steps are easily

automated.

Steps to Perform Secure Composition

1. Combine the specifications of A and B. Call it AB.

2. Remove all rules from AB (formally, this is composition A+ B).

3. Add necessary associations of subjects in A with security elements in B.

4. Add necessary associations of objects in B with security elements in A.

5. Add elements to generate the desired new system authorizations.

6. Add hybrid rules (rules enforcing A and B simultaneously) (formally, this

is composition (A+ B ∗R).

7. Compile AB.

WASL policy composition applies elements of an algebraic framework for composing access

control policies similar to those in [BdVS02]. The method permits independent policies to main-

tain access restrictions for systems within an environment of heterogeneous policies while adding a

combined, inter–policy access specification.

In this framework policy identifiers Px are distinguished by their subscript x and are associated

with sets of relations including system authorizations through the partial mapping established by

the environment e. The mapping of system authorizations and other non–authorization relations

associated with Px are identified by the annotation [[Px]]e. The algebraic operators include addition

(+) and closure (∗) using a set of rules and other statements R, each summarized in Table 16. The
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closure function generates all permitted authorization terms by applying a set of inference rules R

to a policy.

Table 16: Composition Operators, Symbols, and Semantics

Name Smb Definition

Addition + [[P1 + P2]]e
def
= [[P1]]e ∪ [[P2]]e

Closure ∗ [[P ∗R]]e
def
= closure(R, [[P ]]e)

There are two primary distinctions between the semantics herein and those used in [BdVS02]:

1. The environment e includes nearly the entire policy specification (except the rules) rather than

just the system authorizations.

2. R can include both relations and rules rather than just rules.

Applying this composition framework to a WASL–specified system leads to the representation

of compositions using the form (P1 + P2) ∗ R or closure(R, ([[P1]]e ∪ [[P2]]e)). An immediate

requirement following from the addition of policies is terms must be unambiguous; identifiers used

for subjects, objects, or other elements under policy P1 must not be confused with elements under

policy P2. As mentioned before, compatibility requires that any new authorizations generated by

rules and other relations identified in R must include actors and targets from different systems (i.e.,

if the actor is under P1 the target must be under P2 and vice versa). The addition of relations

specifying an acceptable (partially ordered) security level hierarchy along with rules that enforce the

appropriate policy ensures consistency.

Thus, the annotation [[Px]]e of a policy that is to be compiled represents a slightly smaller set

of statements than the entire representation of policy Px. Rules generating system authorizations

during compilation are consistent with the component policies and are applied during composition

to ensure consistency of the resulting policy.

5.2 Composition Examples

This section considers systems J, K, L, and P, using the steps and rules from Section 5.1

to compose these systems in WASL. The results of composition sustain security as defined above.

Composition of J with L is presented in Section 5.2.1 while K is composed with P in Section 5.2.2.

Composition within similar security models is presented with the associated formalisms in Chap-

ter VI.

69



5.2.1 BLP–Biba Composition. Suppose the administrator of J permits read access of level

JU objects to level LL subjects under L. Steps 1 and 2 need not be presented here. Steps 3 and

4 are accomplished by asserting that appropriate L subjects are in level JU and J objects are in

level LL. Step 5 is policy–type specific, here requiring the administrator establish discretionary read

access for J subjects. Step 6 applies the hybrid BLP–Biba policy rule that generates read system

accesses. The code is:

-- associate L subjects with level JU

-- and J objects with LL

inlevel(s, LL) => inlevel(s, JU);

inlevel(o, JU) => inlevel(o, LL);

-- discretionary read permissions

-- for L subjects in level JU

inlevel(s, l1) & leveltype(l1, L) & inlevel(s, JU) & inlevel(o, l2) & leveltype(l2, J)

=> cando(s, o, R);

leveltype(l1, J) & leveltype(l3, L) & cando(s, o, R) & inlevel(s, l1) & inlevel(o, l2)

& levelgeq(l1, l2) & inlevel(s, l3) & inlevel(o, l4) & levelgeq(l4, l3)

=> auth(s, o, R);

Compilation (step 7) yields two discretionary authorizations but only one new system autho-

rization:

cando(LS2, JO1, R);

cando(LS2, JO2, R);

auth(LS2, JO2, R);

The composition permits all the accesses originally provided by J and L in their respective

networks and does not add accesses that are disallowed in the separate systems, thus preserving

security within the individual networks. The added authorization also sustains security for the

composed system (JL) by permitting only R access to objects at the low security level in J by

subjects in L, an authorization consistent with both the BLP and Biba models of security.

5.2.2 BLP–CW Composition. Consider a composition that combines systems K and P.

Suppose the administrator of P grants access to P objects to subjects of K. Desired accesses are

generated by following the following procedures.

The first two steps are clear and require no further discussion. Subject KS1 is granted initial

access to D2 and D6 while subject KS2 is given access to D1, D7, and D8, thus accomplishing step 3. For

step 4, objects D1, D3, D5, and D7 are classified as secret, while D2, D4, D6, D8, and D9 are unclassified.

All cross–system discretionary accesses (K subjects and P objects) are specified with a single rule

for step 5. The code performing steps 3 through 6 (using the hybrid rules developed in Section 4.3

for step 6) is

-- relate objects to K levels

inlevel(D1, KS); inlevel(D3, KS);
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inlevel(D5, KS); inlevel(D7, KS);

inlevel(D2, KU); inlevel(D4, KU);

inlevel(D6, KU); inlevel(D8, KU);

inlevel(D9, KU);

-- define initial accesses

do(KS1, D2, R); do(KS1, D6, R);

do(KS2, D1, R); do(KS2, D7, R);

do(KS2, D8, R);

-- discretionary read permissions

-- for K subjects of N objects

inlevel(s, l1) & leveltype(l1, BLP)

& in(o, CD) => cando(s, o, a);

-- add hybrid rules for first compilation

-- enumerate system authorizations to read

(cando(s, o1, R) & inlevel(s, l1) & inlevel(o1, l2) & levelgeq(l1, l2))

& (in(o1, CDSan) | (do(s, o2, R) & in(o1, k1) & in(o2, k1) & in(k1, CD)))

=> auth(s, o1, R);

-- enumerate negative write authorizations

-in(o2, CDSan)

& ((in(o1, k1) & in(o2, k2) & dirin(k1, CD) & dirin(k2, CD) & -equals(k1, k2))

& do(s, o2, R))

=> do(s, o1, -W);

The compilation of this code (step 7) yields the read accesses and negative write authorizations

in Figure 17. Adding the remaining hybrid rule below and compiling the code again generates the

write authorizations, but because all write authorizations appear in a do(KSx,Dy,-W) statement, this

does not add any authorizations (or otherwise change) the compiled, composed policy. This repeats

steps 6 and 7 based on requirements unique to and consistent with the CW policy type.

-- enumerate system authorizations to write

cando(s, o1, W) & inlevel(s, l1) & inlevel(o1, l2) & levelgeq(l2, l1)

& in(o1, CD) & auth(s, o1, R) & -do(s, o1, -W)

=> auth(s, o1, W);

auth(KS1, D1, R); auth(KS1, D2, R); auth(KS1, D5, R); auth(KS1, D6, R); auth(KS1, D9, R);

auth(KS2, D2, R); auth(KS2, D8, R); auth(KS2, D9, R);

do(KS1, D1, -W); do(KS1, D2, -W); do(KS1, D3, -W); do(KS1, D4, -W); do(KS1, D5, -W);

do(KS1, D6, -W); do(KS1, D7, -W); do(KS1, D8, -W); do(KS1, D9, -W);

do(KS2, D1, -W); do(KS2, D2, -W); do(KS2, D3, -W); do(KS2, D4, -W); do(KS2, D5, -W);

do(KS2, D6, -W); do(KS2, D7, -W); do(KS2, D8, -W); do(KS2, D9, -W);

Figure 17: Code for P Subjects’ Accesses

This composition permits all the accesses originally provided by K and P in their respective

networks and does not add accesses that are disallowed in the separate systems, thus preserving

security within the individual networks. The added authorizations also sustain security for the

composed system (KP) as no violations of either the CW or BLP rules are permitted, directly or

indirectly.
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5.3 Conclusion

Composition presents various challenges depending on the definition selected. The terms con-

sistency and compatibility emphasize the key issues of primary concern in this work, capturing the

importance of data flow security in this policy enforcement approach.

The composition approach presented here is demonstrated to be secure and exhibits several

desirable qualities. Support for heterogeneous policies is clear. The expressiveness of WASL supports

the composition of a variety of component policy models. Formal semantics can be attached to the

processes and is discussed in Chapter VI.
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VI. WASL: The Formal Model

Proving secure communications within a computer network is a challenge that requires some

formal analysis of the system. This chapter deals with this challenge from the perspective of

specified policy requirements and the expression of those requirements in WASL. Policies expressed

herein are based on three formal models of security and are identified using both formal theoreti-

cal representations and equivalent WASL constructs. The axiomatic basis of each policy model is

imperative to proving security in the systems described.

The chapter is organized as follows. WASL is shown to support three distinct notions of

security: the Bell–LaPadula model with the WASL representation in Section 6.1, the Biba strict

integrity model and its representation in WASL in Section 6.2, and the Chinese Wall model in

Section 6.3. Section 6.4 provides concluding comments.

6.1 BLP Model Formalized

This section considers Bell–LaPadula Model (BLP model or just BLP) [LB73; BL75] as speci-

fied by WASL. It begins in Section 6.1.1 with a detailed presentation of the formal model along with

comparable formalizations of the model in WASL. This is followed in Section 6.1.2 by an elaboration

of the composition WASL policies implementing BLP.

6.1.1 Formalisms of BLP. This section presents the BLP model and its representation in

WASL beginning with a discussion in Section 6.1.1.1 of notation and the comparable WASL code.

Section 6.1.1.2 defines the model and Section 6.1.1.3 adds theorems demonstrating the security of the

model itself and as implemented in WASL. The discussion about BLP model notations, definitions,

and theorems generally follows the presentations of [LB73] and [Bis03]. These works present two

additional actions, namely, execute (meaning an action that includes neither read nor write) and the

combination read–write (where information flows both toward and away from the actor in the same

action). Analyzing the absence of data flow (e.g., the action execute) adds nothing to this research

and is, therefore, omitted. Similarly, a directive in a WSN is expected to be either read or write

and, thus, the combined read–write is also omitted.

6.1.1.1 The System: Notations. Symbols, their semantics, and the equivalent WASL

representation are summarized in Table 17. Individual entities are represented by a lowercase letter

and, when a set is used, the corresponding uppercase letter represents “the set of all elements” of

the given type (e.g., S is a set of all subjects s). N represents the positive integers, and the empty

set is Ø.
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Table 17: Symbols, Semantics, and WASL Encoding for BLP

Sym Description WASL Representation

a An access right var action a or const action A

b Authorizations b ∈ P (S ×O ×A) auth(s,o,a)

c A classification level var level l or const level L

d An outcome, d ∈ {e,n, y} —
e Outcome “illegal” or “error” —
f Pairs (fS , fO) —
fS A function that associates each sub-

ject with its security level
Set of inlevel(s,l)

fO A function that associates each ob-
ject with its security level

Set of inlevel(o,l)

m Access control matrix Set of cando statements
(discretionary rights)

n Outcome “no” —
o An object const object O, const kind K,

var object o, or var kind k

r Access right (action) “read” const action R

r A request for access —
s A subject const subject S, const group G,

var subject s, or var group g

v A state; a triple (b,m, f) —
w An action in the system, —

w ∈ R×D × V × V
w Access right (action) “write” const action W

y Outcome “yes” —
Σ A security system begin {statements} end;

RN is a special notation indicating the set of sequences of the elements in R (in this case,

the set of sequences of access requests). One of these sequences is represented by R, where the t th

element of R is rt. When two elements are sequentially related, the latter element will be annotated

with a tick (′), such as f ′, whereas the former will have no annotation, as in f .

Elements referring specifically to constructs in WASL are presented in Courier font. Constant

terms in WASL generally begin with a capital letter (e.g., const action W) whereas variable terms

begin with a lowercase letter (e.g., var action a).

WASL code segments require term identifiers. Except as otherwise declared, the lowercase

WASL terms below are variables representative of any of the pertinent identifier type.

S is the set of a system’s set of actors s, called subjects, and are encoded in WASL const

subject S and const group G statements. The set of objects, or the entities acted upon, is O and

is captured in const object O and const kind K. The set of actions performed by a subject on an

object are labeled A; the two actions are coded as const action W and const action R.
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Subjects and objects hold a security clearance level, const level L, corresponding to one of the

security clearances c. The functions fS and fO associate each subject and object, respectively, with

their security clearance (a term synonymous here with security classification) and f is a pair (fS , fO).

The security clearances are partially ordered so that when li, lj ∈ L, using levelorder(li,lj) or

levelorder(lj,li), exactly one of the following holds:

1. li > lj ,

2. li = lj , or

3. li < lj .

Authorizations are expressed as triples (s, o, a) with three forms of authorization defined: dis-

cretionary, mandatory, and system authorizations. Let m be a discretionary rights access control

matrix established by the security administrator. Each entry in m is encoded cando(s,o,a). Manda-

tory authorizations are specified via rules and are represented through model definitions rather than

being expressed by a particular language element. System authorizations b are specified using the

auth(s,o,a) construct. They are generated by WASL rules to enforce the mandatory authoriza-

tion requirements and appear as re => auth(s,o,a) where re is a relation expression. A particular

element of b is identified by bi where i identifies the ith element of b.

The system state v is represented by the triple (b,m, f). The sequence of requests for access

R and the set of possible outcomes resulting from requests D are combined to form a sequence of

actions in the system W ⊆ R×D× V × V . The requests r are not modeled in WASL because they

are handled by the system–specific query–handling mechanism. An outcome d for a request can be y

(“yes”), n (“no”) or e (“illegal” or “error”). The system Σ in BLP consists of its requests, outcomes,

and actions performed starting from an initial state z0 and is annotated Σ(R, D,W, z0).

Using these definitions the system Σ(R, D, W, z0) is in state vt−1 and receiving a request ri

from some subject, leading to decision di being made by the system. This sequence of activity is an

action w that describes Σ “in operation,” so to speak, moving from state vt−1 to state vt due to ri

and subsequent decision di based on state vt−1.

An appearance of Sigma is simply a triple describing Σ “at rest” in state vi after request

ri and decision di. System Σ consists of R, D, and W having an initial state of z0 is represented

as Σ(R, D,W, z0) ⊆ X × Y × Z. By letting X = RN, Y = DN, and Z = V N, then at some time

t ∈ N, the system is in state zt−1 and receives some subject’s request xt leading to decision yt

and a transition to the (possibly different) state zt. Thus, (x, y, z) ∈ Σ(R, D,W, z0) if and only if

∀t ∈ N : (xt, yt, zt−1, zt) ∈ W . This leads to the definition of an action.
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Definition 6.1.1. (r, d, v, v′) ∈ R ×D × V × V is called an action of Σ(R,D, W, z0) if and only if

there is an (x, y, z) ∈ Σ(R, D, W, z0) and a t ∈ N such that (r, d, v, v′) = (zt, yt, zt−1, zt).

When a query (request) is presented to a network, the query–handling mechanism formats the

query appropriately and, if the query matches an auth(s,o,a) statement generated by the WASL

compiler, the decision is y; otherwise it is n. Decisions are not explicitly represented because any

outcome is evident by whether the system responds to the request or not.

Certain aspects presented herein do not appear or are modified from LaPadula’s presentation.

Categories have been omitted from this discussion because this level of complexity is not expected for

a wireless sensor network, but extending WASL to represent categories is straightforward, making

use of the leveltype construct and additional inlevel statements that would be referenced in rules

generating authorizations. Additionally, a WSN’s motes are not expected to be changing security

levels so fS is the subject’s security level rather than its maximum security level and fC , the current

security level, is not used. This eliminates an element from each f .

6.1.1.2 BLP Model: Formal Specification. This section uses the above conventions,

definitions, and descriptions to formally define the BLP model following [LB73] and [Bis03]. The

properties identified here are used in Section 6.1.1.3 to identify a secure system (see Section 2.2.2).

WASL captures Definitions 2.2.2–2.2.4 in the two rules:

1. cando(s,o,R) & inlevel(s,l1) & inlevel(o,l2) & levelgeq(l1,l2)

=> auth(s,o,R), and

2. cando(s,o,W) & inlevel(s,l1) & inlevel(o,l2) & levelgeq(l2,l1)

=> auth(s,o,W).

The first rule enforces the ds–property in the requirement cando(s,o,R) and the mandatory

conditions of the simple security condition and ∗–property with inlevel(s,l1) & inlevel(o,l2) &

levelgeq(l1,l2). When an authorization auth(s,o,R) for a particular subject s to perform action R

(read) on object o meets these conditions, the authorization can be added to the policy. The second

rule similarly enforces the requirements for generating write authorizations.

These WASL rules use an important security relationship supported by WASL: the security

level hierarchy. Using specified levels with defined levelorders, a partial ordering of classification

levels is established and enforced during compilation by assuring the desired reflexive, transitive,

and antisymmetric relationships. The WASL relation levelgeq(l1,l2) corresponds to the BLP

relation l1 dom l2 for classification levels l1 and l2. Associations of subjects and objects to security
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clearances correspond to inlevel statements and, along with levelgeq expressions, enable direct

BLP–to–WASL specifications.

A system is considered secure if every reachable state satisfies the simple security condition, the

∗–property, and the discretionary security property. For WASL this means that every authorization

auth(s,o,a) must meet the requirements in the above two rules.

6.1.1.3 Security Theorems. The definitions in the previous section provide an ax-

iomatic basis for making assertions about the security of a given system. This section examines

theorems to prove security of systems in theory and as implemented in WASL.

Theorem 6.1.1 uses Definitions 2.2.2–2.2.4 to establish the initially secure state of some WASL

system σ that implements BLP as described above.

The initial state for a WASL policy is the pre–compiled specification. Thus, there are no

auth(s,o,a) statements as these are generated during compilation.

Theorem 6.1.1. The initial state of WASL system σ, call it zσ0, satisfies the simple security

condition, the ∗–property, and the ds–property.

Proof. Initially, σ contains no system authorizations—no auth statements. Therefore, b = Ø satis-

fying Definitions 2.2.2–2.2.4 trivially.

The next three theorems (Theorems 6.1.2–6.1.4) further specify the security of a state generated

through the addition of a new access right.

Theorem 6.1.2. Let v = (b,m, f) satisfy the simple security condition. Let (s, o, a) 6∈ b, b′ =

b∪{(s, o, a)}, and v′ = (b′, m, f). Then v′ satisfies the simple security condition if and only if either

of the following conditions is true.

1. a = w.

2. a = r and fS(s) dom fO(o).

Proof. (1) follows from Definition 2.2.2 and v′ satisfying ssc rel f. For (2), if v′ satisfies the simple

security condition, then, by definition, fS(s) dom fO(o) when a = r. Moreover, if fS(s) dom fO(o),

then (s, o, a) ∈ b′ satisfies ssc rel f. Hence, v′ satisfies the simple security condition.

Theorem 6.1.3. Let v = (b, m, f) satisfy the ∗–property. Let (s, o, a) 6∈ b, b′ = b ∪ {(s, o, a)}, and

v′ = (b′,m, f). Then v′ satisfies the ∗–property if and only if one of the following conditions holds:

1. a = w and fO(o) dom fS(s)
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2. a = r and fS(s) dom fO(o)

Proof. The theorem follows from Definition 2.2.3 and v′ satisfying the ∗–property. Conversely, by

Definition 2.2.3, {(s, o, a)} satisfies the ∗–property. Thus, v′ satisfies the ∗–property.

Theorem 6.1.4. Let v = (b,m, f) satisfy the ds–property. Let (s, o, a) 6∈ b, b′ = b ∪ {(s, o, a)}, and

v′ = (b′,m, f). Then v’ satisfies the ds–property if and only if a ∈ m[s, o].

Proof. If v′ satisfies the ds–property, then the claim follows immediately from Definition 2.2.4. Con-

versely, assume that a ∈ m[s, o]. Because (s, o, a) ∈ b′, the ds–property holds for v′. Thus, v′ satisfies

the ds–property.

The security state of a WSN using WASL does not change unless there is a policy update across

the entire network as directed by the gateway node. Therefore, there are no state changes resulting

from any request or outcome in the BLP formal model. The security state v of the WSN’s security

system is determined from the auth statements (representing b) generated by rules operating on

cando statements (discretionary authorizations identified in m) and classification level comparisons.

The above principles extend Theorem 6.1.5 for WASL which show WASL system σ conforms

to the conditions in Theorems 6.1.2–6.1.4.

Theorem 6.1.5. For WASL system σ, only secure state changes occur during compilation.

Proof. Definition 2.2.1 and the semantics of the relations levelorder and levelgeq establish that

security levels are partially ordered.

The only way to add a system authorization (s, o, r) for some u and o, (i.e., auth(s,o,R)) is for

fS(s) dom fO(o) for the discretionary authorization in m (a statement cando(s,o,W)). The WASL

rule cando(s,o,R) & inlevel(s,l1) & inlevel(o,l2) & levelgeq(l1,l2) => auth(s,o,R) is the only

way to add a system authorization for r access and {s : s ∈ S}, thus meeting the requirements of

Theorems 6.1.2–6.1.4.

The only way to add a system authorization (s, o,w) for some s and o, (auth(s,o,W) in WASL),

where s ∈ S and o ∈ O is for fO(o) dom fS(s) for the discretionary authorization in m (a statement

cando(s,o,W)). The WASL rule cando(s,o,W) & inlevel(s,l1) & inlevel(o,l2) & levelgeq(l2,l1)

=> auth(s,o,W) is the only way to add a system authorization for w access and {s : s ∈ S}, thus

meeting the requirements of Theorems 6.1.2–6.1.4.

Other policy modifications can be made (e.g., the addition of inlevel statements), but they

do not change the security state of the system. Therefore, state transitions that occur during

compilation are secure and J remains secure during compilation.
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6.1.2 Composition of BLP Systems in WASL. Secure policy composition is also supported

in WASL. Consider two individual policies, J and K. These policies are composed and the resulting

policy is shown to maintain security.

System J has two security levels, two groups, one subject per group, two kinds, one object

per kind, and the two actions R and W. Figures 18a and 18c depict the specification of constants

in the system and their relationships as well as discretionary authorizations defined by the system

administrator. Constants in ovals are used in system authorizations while those that are not are

in boxes. Key terms identifying relations relating two constants are written across the lines that

identify the relationship. The specification for system K is similar, appearing in Figures 18b and 18d.

This policy has more limited discretionary authorizations than J.

a: J Constants in WASL b: K Constants in WASL

c: J Discretionary Authorizations d: K Discretionary Authorizations

Figure 18: BLP Systems J and K Specifications

The policy specifications include two BLP rules, one each for generating system authoriza-

tions for Reads and Writes: cando(s,o,R) & inlevel(s,l1) & inlevel(o,l2) & levelgeq(l1,l2) =>

auth(s,o,R) and cando(s,o,W) & inlevel(s,l1) & inlevel(o,l2) & levelgeq(l2,l1) => auth(s,o,W).

Compilation of the programs yield system authorizations listed in Figure 19. Thus, J and K are

instances of a BLP–compliant policies in WASL by Theorems 6.1.1 and 6.1.5.

Secure composition presumes the two systems being composed share a compatible definition

of security in the component policies (e.g., BLP). The composed policy must also maintain the
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auth(JS1, JO1, R); auth(JS1, JO1, W);

auth(JS1, JO2, R); auth(JS2, JO1, W);

auth(JS2, JO2, R); auth(JS2, JO2, W);

a: J System Authorizations

auth(KS1, KO1, R);

auth(KS2, KO2, R); auth(KS2, KO2, W);

b: K System Authorizations

Figure 19: BLP System Authorizations Generated by Compilation

integrity of component policies by neither removing nor adding system authorizations for subjects

with objects in either system. Thus, any added system authorizations must be for subjects in one

system to objects in the other.

Additionally, the WASL rules generating system authorizations must be identical to those

used by the systems that are to be composed. In the case of BLP systems, it is imperative that

rules generating discretionary authorizations be removed prior to composition because failure to do

so could lead to the addition of unintended discretionary authorizations either within or between

systems. For example, if the security administrators of J and K intend to use a small subset of

the possible discretionary read authorizations for composition, but J uses rule true => cando(s,o,R)

to generate discretionary authorizations, the intent of the administrators will be thwarted by the

pre–existing rule.

The following example is a policy composition along with a proof that the composition is secure.

Suppose the J and K security administrators permit K subjects access to J objects and determine

security level KU is equivalent to JU . Generating the composed policy begins by combining the two

previously–compiled policy specifications and removing any discretionary authorization–generating

rules. This step is easily automated. Two rules are added: one to associate K subjects at level KU

with level JU and the other to create discretionary authorizations for K subjects with J objects.

-- relate JU to KU

inlevel(s,KU) => inlevel(s,JU);

-- generate discretionary authorizations

inlevel(s,l1) & inlevel(o,l2) & leveltype(l1,K) & leveltype(l2,J) => cando(s,o,a);

Theorem 6.1.6 establishes the security of JK at this point.

Theorem 6.1.6. The initial (pre–compilation) state of JK, call it zjk0, satisfies the simple security

condition, the ∗–property, and the ds–property.
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Proof. Initially JK contains only those auth statements from the individual policies J and K. By

Theorem 6.1.5 J and K satisfy Definitions 2.2.2–2.2.4. Therefore the combined policy, with no

additional authorizations is also secure.

Compiling the resulting code generates four discretionary authorizations and three system

authorizations.

cando(KS1, JO1, W);

cando(KS1, JO2, W);

cando(KS2, JO1, R);

cando(KS2, JO2, R);

auth(KS2, JO2, R);

auth(KS2, JO2, W);

auth(KS2, JO1, W);

The security of the composed system according to the definition of security in the compo-

nent policies and the specification of security level relationships in the composition statements is

established below.

A composed system is secure by definition when the system authorizations for component

policies remain unchanged and any new authorizations follow the same restrictions as individual

policies.

Theorem 6.1.7. For WASL system JK, only secure state changes occur during compilation.

Proof. Let the state of J prior to composition be vJ = (bJ, fJ, mJ) and of K prior to composition be

vK = (bK, fK, mK), where vJ and vK are secure. After composition the states of these systems are

v′J = (b′J, f
′
J,m

′
J) and v′K = (b′K, f ′K,m′

K), respectively.

Discretionary authorizations added to the composed policy include those generated by the rule

inlevel(s,l1) & inlevel(o,l2) & leveltype(l1,K) & leveltype(l2,J) => cando(s,o,a) (each an en-

try in m). This rule states that new discretionary authorizations will have a subject from K and

an object from J. This precludes the addition of entries to m that have a subject and object from

the same system. Therefore, mJ = m′
J with respect to subjects and objects in J and mK = m′

K with

respect to subjects and objects in K.

J and K were previously compiled so bJ = b′J and bK = b′K because a change in m is required

before b can be changed. Additionally, fJ and fK remain unchanged so fJ = f ′J and fK = f ′K.

Therefore vJ = v′J and vK = v′J. vJ and vK are known to be secure and, thus, v′J and v′K are also

secure.

Definition 2.2.1 and the semantics of the relations levelorder and levelgeq establish JS dom

JU and ¬(JU dom JS).
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The only way to add a system authorization (s, o, r) for some s and o (i.e., auth(s,o,R) in

WASL) is for a discretionary authorization in m (a statement cando(s,o,R)) to be in compliance with

the relation fS(s) dom fO(o) (equivalent to inlevel(s,l1) & inlevel(o,l2) & levelgeq(l1,l2)).

The WASL rule cando(s,o,R) & inlevel(s,l1) & inlevel(o,l2) & levelgeq(l1,l2) => auth(s,o,R)

is the only way to add a system authorization for r access and {s : s ∈ S}, thus meeting the

requirements of Theorems 6.1.2–6.1.4.

The only way to add a system authorization (s, o,w) for some s and o, (auth(s,o,W) in WASL),

where s ∈ S and o ∈ O is for a discretionary authorization in m (a statement cando(s,o,W)) to be

in compliance with the relation fO(o) dom fS(s) (equivalent to inlevel(s,l1) & inlevel(o,l2) &

levelgeq(l2,l1)). The WASL rule cando(s,o,W) & inlevel(s,l1) & inlevel(o,l2) & levelgeq(l2,l1)

=> auth(s,o,W) is the only way to add a system authorization for w access and {s : s ∈ S} ⊆ S, thus

meeting the requirements of Theorems 6.1.2–6.1.4.

Other policy modifications (e.g., the addition of inlevel statements) do not change the security

state of the system. Therefore, state transitions that occur during compilation are secure.

Thus, any additions to m are cross–system discretionary authorizations. New system autho-

rizations can be made only in compliance with Definitions 2.2.2–2.2.4. Therefore, JK remains secure

by definition during compilation.

Could, however, information flow from J to K and then back to J in a way that violates Jś

security policy? For example, suppose object ObjectJ1 has classification level JL1 and object ObjectJ2

has classification level JL2 where levelgeq(JL2,JL1) is true. Could some subject SubjK1 read ObjectJ2

and write the data to object ObjectJ1?

Theorem 6.1.7 addresses this possibility and ensures security is maintained. Policies being

composed share a compatible definition of security and the dom relation apply to the authorizations

generated during composition just as they do during compilation of the individual policies. If,

however, security classifications are not properly assigned or the partial–ordering of classification

levels is not maintained, these errors are identified during the compilation of the composition. Thus,

no inappropriate data flows are possible and BLP–defined security is maintained.

6.2 Biba’s Model Formalized

Biba’s strict integrity policy [Bib77] maintains a notion of data integrity by answering the

question, “Is the subject or data trustworthy enough for the specified activity?” The model (also

called Biba’s model or just Biba) does not allow lower integrity subjects to write information to higher

integrity subjects. Similarly, high integrity subjects should not read lower integrity information.
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This section considers a policy that conforms to these requirements, beginning with the formalisms

in Section 6.2.1 and continuing with a demonstrated policy composition with associated proofs of

security in Section 6.2.2.

6.2.1 Formalisms of Biba. The formalization of the model is presented in Section 6.2.1.1

with necessary theorems in Section 6.2.1.2.

6.2.1.1 Biba’s Model: Formal Specification. This section uses the conventions, defi-

nitions, and descriptions above to formally define Biba’s model following [Bib77] and [Bis03]. Prop-

erties identified define when a system is secure within this framework.

Axiom 6.2.1 specifies that a subject of the same or lower integrity level than an object may

observe that object. This is the dual of the BLP simple security condition. This axiom prevents a

subject from becoming corrupted by less trusted information and is identified in WASL by stating

that an authorization for a subject (s) to read an object (o) requires the integrity level of the subject

(l1) to be dominated by the integrity level of the object (l2): inlevel(s,l1) & inlevel(o,l2) &

levelgeq(l2,l1) => auth(s,o,R).

Axiom 6.2.1. ∀s ∈ S, o ∈ O such that (s, o, r) ⇒ fO(o) dom fS(s).

The second axiom states a subject of the same or relatively higher integrity level than an object

may modify that object. This is the dual of the BLP ∗–property ; a subject may not corrupt an

object trusted information. WASL code for this axiom identifies that an authorization for a subject

(s) to write to an object (o) requires the integrity level of the subject (l1) to dominate the integrity

level of the object (l2): inlevel(s,l1) & inlevel(o,l2) & levelgeq(l1,l2) => auth(s,o,W).

Axiom 6.2.2. ∀s ∈ S, o ∈ O such that (s, o, w) ⇒ fS(s) dom fO(o).

The third axiom specifies that a subject, s1, may invoke another subject, s2, if s1 has the

same or a higher integrity level as s2. Data transfer from s1 to s2 is presumed and therefore a

subject is prohibited from using a third party as a proxy to inject lower integrity information. The

corresponding WASL code identifies that an authorization for one subject (s1) to invoke another

subject (s2) requires the integrity level of the first (l1) to dominate the integrity level of the second

(l2): inlevel(s1,l1) & inlevel(s2,l2) & levelgeq(l1,l2) => auth(s1,s2,I).

Axiom 6.2.3. ∀s1, s2 ∈ S such that (s1, s2, i) ⇒ fS(s1) dom fS(s2).

The following definitions identify the secure states of a system and define state changes for

Biba’s model of security.

Definition 6.2.1. A system Σ(b, z0) is secure if and only if, in that system, every authorization

bx ∈ b satisfies Axioms 6.2.1, 6.2.2, and 6.2.3.
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Definition 6.2.2. A system Σ(b, z0) changes state any time an authorization bx ∈ b is added to or

deleted from the set of system authorizations b.

When a system’s state changes, the state is Σ′(b′, z0) with the new set of authorizations b′.

The axioms and definitions above are sufficient for making assertions about the integrity of a system

according to Biba’s model. The next section identifies the requirements for preserving integrity.

6.2.1.2 Security Theorems.

Theorem 6.2.1. Let Σ(b, z0) represent the a system where b = Ø. Σ(b, z0) preserves integrity.

Proof. There are no authorizations in the system. Therefore, Definition 6.2.1 holds trivially.

System authorizations b are captured in the auth statements of a WASL specification σ(b, zσ0)

where zσ0 is the pre–compiled specification of σ(b, zσ0) that contains no auth statements.

Theorem 6.2.2. The initial (pre–compilation) state of a WASL system σ(b, zσ0) is secure.

Proof. State zσ0 initially contains no system authorizations—no auth statements—and, thus, con-

forms to Theorem 6.2.1 and satisfies Definition 6.2.1 trivially.

The next three theorems establish the security of a system when adding authorizations of each

of the types permitted in Biba systems.

Theorem 6.2.3. Let b1 be an authorization of the form (s, o, r) and let Σb, z0 be the current, secure

system where b1 6∈ b. Σ′(b′, z0) is identical to Σ(b, z0) except the authorizations in Σ′(b′, z0) are

b′ = b ∪ b1. System Σ′(b, z0) is secure if and only if fO(o) dom fS(s).

Proof. Assume ¬(fO(o) dom fS(s)). Then b1 ∈ b′ violates Axiom 6.2.1 and by Definition 6.2.1 the

system Σ′(b′, z0) is not secure. Thus it must be that fO(o) dom fS(s).

Assume Σ′(b′, z0) is secure. Then every bx ∈ b′ satisfies Axioms 6.2.1, 6.2.2, and 6.2.3. By

Definition 6.2.1, every bx ∈ b satisfies Axioms 6.2.1, 6.2.2, and 6.2.3 and so each bx ∈ b′ including

bx = b1 satisfies Axioms 6.2.1, 6.2.2, and 6.2.3. This completes the proof.

Theorem 6.2.4. Let b1 be an authorization of the form (s, o,w) and let Σ(b, z0) be the current,

secure system where b1 6∈ b. Furthermore, let the authorizations for Σ(b, z0) be b. Σ′(b′, z0) is

identical to Σ(b, z0) except the authorizations in Σ′ are b′ = b ∪ b1. System Σ′(b′, z0) is secure if

and only if fS(s) dom fO(o).

Proof. Assume ¬(fS(s) dom fO(o)). Then b1 ∈ b′ violates Axiom 6.2.2 and by Definition 6.2.1 the

system Σ′(b′, z0) is not secure. Thus it must be that fS(s) dom fO(o).
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Assume Σ′(b′, z0) is secure. Then every b ∈ b′ satisfies Axioms 6.2.1, 6.2.2, and 6.2.3. By

Definition 6.2.1, every bx ∈ b satisfies Axioms 6.2.1, 6.2.2, and 6.2.3 and so each bx ∈ b′ including

bx = b1 satisfies Axioms 6.2.1, 6.2.2, and 6.2.3. This completes the proof.

Theorem 6.2.5. Let b1 be an authorization of the form (s1, s2, i) and let Σ(b, z0) be the current,

secure system where b1 6∈ b. Furthermore, let the authorizations for Σ(b, z0) be b. Allow system

Σ′(b′, z0) to be identical to Σ(b, z0) with the exception that the authorizations in Σ′ are b′ = b ∪ b1.

System Σ′(b′, z0) is secure if and only if fS(s1) dom fS(s2).

Proof. Assume ¬(fS(s1) dom fS(s2)). Then b1 ∈ b′ violates Axiom 6.2.2 and by Definition 6.2.1 the

system Σ′(b′, z0) is not secure. Thus it is necessary that fS(s1) dom fS(s2).

Assume Σ′(b′, z0) is secure. Then every b ∈ b′ satisfies Axioms 6.2.1, 6.2.2, and 6.2.3. By

Definition 6.2.1, every bx ∈ b satisfies Axioms 6.2.1, 6.2.2, and 6.2.3 and so each bx ∈ b′ including

bx = b1 satisfies Axioms 6.2.1, 6.2.2, and 6.2.3. This completes the proof.

Theorem 6.2.6 asserts that WASL constructs for a Biba–consistent system σ properly maintains

system security during state changes that occur during compilation. A secure state change is one in

which any added auth statements do not violate system security.

Theorem 6.2.6. State changes that occur during compilation of initially–secure WASL system σ

are secure.

Proof. Definition 2.2.1 and the semantics of the relations levelorder and levelgeq establish that

security levels are partially ordered.

In accordance with Axiom 6.2.1, the only way to securely add a system authorization, (s, o, r)

for some s and o, (auth(s,o,R) in WASL), where s ∈ S and o ∈ O is for the integrity levels of s and o to

be related as fO(o) dom fS(s) (equivalent to inlevel (s,l1) & inlevel(o,l2) & levelgeq(l2,l1)).

The rule inlevel(s,l1) & inlevel(o,l2) & levelgeq(l2,l1) => auth(s,o,R) is the only way to add

a system authorization for r access. Thus, Theorem 6.2.3 is satisfied.

In accordance with Axiom 6.2.2, the only way to securely add a system authorization, (s, o,w)

for some s and o, (auth(s,o,R) in WASL), where s ∈ S and o ∈ O is for the integrity levels of s and o to

be related as fS(s) dom fO(o) (equivalent to inlevel (s,l1) & inlevel(o,l2) & levelgeq(l1,l2)).

The rule inlevel(s,l1) & inlevel(o,l2) & levelgeq(l1,l2) => auth(s,o,W) is the only way to add

a system authorization for w access. Thus, Theorem 6.2.4 is satisfied.

In accordance with Axiom 6.2.3, the only way to securely add a system authorization, (s1, s2, i)

for some s1 and s2, (auth(s1,s2,R) in WASL), where s1 ∈ S and s2 ∈ S is for the integrity levels

of s1 and s2 to be related as fS(s1) dom fS(s2) (equivalent to inlevel (s1,l1) & inlevel(l2,l2) &
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levelgeq(l1,l2)). The rule inlevel(s1,l1) & inlevel(s2,l2) & levelgeq(l1,l2) => auth(s1,s2,W)

is the only way to add a system authorization for i access. Thus Theorem 6.2.5 applies.

Other policy modifications are made (e.g., the addition of inlevel statements), but they do not

change the security state of the system. Therefore, state transitions that occur during compilation

are secure.

Security defined for Biba as described above permits the accurate implementation of Biba–

compliant policies in WASL. These policies can, in turn, have been proven to support Biba’s defini-

tions as has been shown for any system σ. Three WASL rules, one generating system authorizations

for each of Observe, Modify, and Invoke, are the enabling mechanism for this assurance of security.

The above proofs can be extended without loss of generalization to any policy specification that uses

these rules to generate system authorizations.

6.2.2 Composition of Biba Systems in WASL. Secure policy composition is also supported

in WASL. Consider two individual policies, L and M. These policies are composed and the resulting

policy LM is shown to maintain security.

System L has two integrity levels, two groups, one subject per group, two kinds, one object per

kind, and the two actions R (for Observe), W (for Modify), and I (for Invoke). Figure 20a depicts

the specification of constants in the system and their relationships to each other. Constants that

appear in ovals are used in system authorizations while those that do not are in boxes. Key terms

identifying relations relating two constants are written across the lines that identify the relationship.

The specification for system M is similar, pictured in Figure 20b.

Policy specifications L and M include three WASL rules, one corresponding to each of the

Axioms 6.2.1–6.2.3. Compilation of the programs yield system authorizations listed in Figure 20.

Policy composition presumes the two systems being composed share a compatible definition of

security in the component policies (e.g., Biba). The composed policy must sustain the integrity of

component policies by neither removing nor adding system authorizations for subjects with objects

in either system. Added system authorizations must be for subjects in one system and objects in

the other and the WASL rules generating system authorizations must be identical to those used by

the systems that are to be composed (i.e., the three WASL–Biba rules).

Suppose the system administrators permit M subjects access to L objects and determine in-

tegrity level ML is equivalent to level LL. Generating the composed policy begins by combining

the two previously–compiled policy specifications and removing any authorization–generating rules.

This step is easily automated and the initial combination is secure as seen in Theorem 6.2.7.

Theorem 6.2.7. The initial state of LM, call it zjk0, is secure.
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a: System L Specification b: System M Specifica-
tion

auth(LS1, LO1, R); auth(LS2, LO1, R);

auth(LS1, LO1, W); auth(LS2, LO2, R);

auth(LS1, LO2, W); auth(LS2, LO2, W);

c: L System Authorizations

auth(MS1, MO1, R); auth(MS2, MO1, R);

auth(MS1, MO1, W); auth(MS2, MO2, R);

auth(MS1, MO2, W); auth(MS2, MO2, W);

d: M System Authorizations

Figure 20: Biba Systems L and M Specifications and Generated Authorizations

Proof. Initially LM contains only those auth statements from the individual policies L and M. By

definition and Theorems 6.2.2 and 6.2.6 L and M are secure. Therefore the policy resulting from

combining policies L and M with no additional authorizations is also secure.

One rule is added to associate M subjects at level ML with level LL.

-- relate LL to ML

inlevel(s,ML) => inlevel(s,LL);

Compiling the code resulting from the combination of L with M and the composition rule

generates four new system authorizations.

auth(MS2, LO1, R); auth(MS2, LO2, R);

auth(MS2, LO2, W); auth(MS2, LO2, I);

A composed system is secure by definition when the system authorizations for component

policies remain unchanged and any new authorizations follow the same restrictions as individual

policies (following Axioms 6.2.1, 6.2.2, and 6.2.3).

Theorem 6.2.8. For WASL system LM, only secure state changes occur during compilation. Addi-

tions of auth statements comply with Axioms 6.2.1–6.2.3 and both L and M maintain their individual

security.
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Proof. L and M are compiled prior to composition, generating all possible secure authorizations for

subjects and objects within either system. Authorizations added to the policy during composition

include only those generated for subjects newly–associated with integrity level LL (namely MS2) from

M. Using the Biba–enforcing rules the only new authorizations generated during composition include

objects in system L—those with integrity levels associated with level LL. Thus, added authorizations

are for subjects from M and objects from L, sustaining the security of individual policies L and M.

For authorizations added during composition, Theorems 6.2.3, 6.2.4, and 6.2.5 apply and se-

curity is shown to be preserved. Protection against indirect security violations where information

passes securely, for example, from L toM but it is returned back into L such that security is violated

is treated in the discussion above with Theorem 6.2.8.

6.3 CW Model Formalized

The Chinese Wall (CW) security policy is a model that is neither a confidentiality (like BLP)

nor an integrity (like Biba) security policy, but has properties of both. With respect to confidentiality,

CW prevents unauthorized subjects from accessing data. On the other hand, any conflict of interest

would breach integrity and CW prevents such breaches, which constitutes the integrity aspect of

the system’s security. The formal model including proofs are in Section 6.3.1 with the WASL

implementation following in Section 6.3.2.

6.3.1 Formalisms of CW. This section formalizes the CW model from [BN89]. It identifies

in Section 6.3.1.1 the notation to be used and presents CW formalization in Section 6.3.1.2 with the

corresponding WASL constructs.

6.3.1.1 The System: Notations. The symbols used for CW formalization and the

WASL code specifying the corresponding construct is summarized in Table 18. Additional symbols

include the conjunction and disjunction represented by ∧ and ∨, respectively. Variables used below

are the positive integer indices h, j, k, l ∈ N.

6.3.1.2 Chinese Wall: Formal Specification. This section defines CW following the

formal model presentation in [BN89]. The properties herein identify when a system can be considered

secure within this framework. The first definitions establish the access control matrix N and the

concept of sanitized information. The auth(s,o,R) statements correspond to true entries in N(k, l)

and serves as the control matrix in WASL. A sanitized data object o is specified in WASL by using

the statement dirin(o,CDSan). A CW system is denoted as Σ(N).
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Table 18: Additional Symbols, Semantics, and WASL Encoding for CW

Sym Description WASL Representation

CD The dataset type const kind CD

COI The conflict of interest class const kind COI

L Set of security labels, {(x, y)} Set of dirin(x,y) when x is a
kind, y is a kind, dirin(x,COI), and
dirin(y,CD)

N {‖S‖ × ‖O‖} matrix with boolean
entries for each (h, j) (sh ∈ S and
oj ∈ O) identifying whether or not
sh has access to oj ; h, j ∈ N

Set of auth(u,o,R) statements

X(o) Function returning x for object o Identified by in(o,K) when K is
declared as const kind K and
dirin(K,COI)

x A COI class const kind K where dirin(K,COI)

xo The sanitized COI const kind COISan

(x, y) A security label, (x, y) ∈ L Pair dirin(Ky,Kx) when
dirin(Ky,CD) and dirin(Kx,COI)

Y (o) Function returning y for o Identified by in(O,K) when K is
declared as const kind K and
dirin(K,CD)

y A dataset dirin(y,CD)

yo The sanitized CD const kind CDSan

As is mentioned above, WSN nodes operate autonomously with only periodic control exerted

by the gateway computer. The limitations on communications and memory and computational

capacities means there cannot be a central arbiter determining responses to access requests. Nor is

there sufficient capacity at the nodes to maintain a data store of all subject and object relationships,

the rules for their interaction, or to compute proper response for each request.

Therefore, if no CD in a particular COI is included in the initial authorizations for a given

subject, no CD in that COI is accessible to that subject. Axiom 6.3.1 replaces Axiom 2.2.3 to reflect

this more–restrictive paradigm. WASL identifies initial permissions using the do authorization state-

ment construct and then applies the rule dirin(o1,CDSan) | (do(s,o2,R) & in(o1,k1) & in(o2,k1)

& dirin(k1,CD)) => auth(s,o1,R) to enforce Axiom 6.3.1.

Axiom 6.3.1. r(k, l) → y ⇐⇒ ∀N(k, j) = true, (yj = yl)

The initial state of a WASL system σ that has implemented the Chinese Wall is established

by proving that it complies with Axiom 2.2.4.

Theorem 6.3.1. The initial state of some WASL system σ, call it zσ0, is secure.

Proof. N is represented by the set of auth statements. System σ has no auth statements prior to

compilation. Thus, by Axiom 2.2.4 σ is secure.
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The following axiom defines when a write (or modify in Biba) is permitted. Two rules in

WASL enforce this requirement. The first rule identifies the unauthorized writes: -in(o2,San) &

((in(o1,k1) & in(o2,k2) & dirin(k1,CD) & dirin(k2,CD) & -equals(k1,k2)) & do(s,o2,R))

=> do(s,o1,-W). Using this rule and the authorizations to read as identified above, the second rule

generates the write authorizations for the system: -do(s,o1,-W) & auth(s,o1,R) => auth(s,o1,W).

Axiom 6.3.2. Write access to any object oj by any subject sk is permitted if and only if N ′(k, j) =

true and there does not exist any object oh for which (N ′(k, h) = true) when it can be read by sk

where yh 6= yj ∧ yh 6= yo.

Theorem 6.3.2 asserts that WASL constructs and composition properly maintain system secu-

rity. Secure state changes are those that comply with Axioms 2.2.3 and 6.3.2.

Theorem 6.3.2. State changes that occur during compilation of some initially–secure WASL system

σ are secure.

Proof. Read authorizations in σ:

One WASL rule is the only way to add a read authorization to σ. This rule thus provides both the

necessary and sufficient condition for adding read authorizations.

Axiom 6.3.1 identifies the necessary and sufficient condition for adding a read authorization.

The WASL expression dirin(o1,CDSan) | (do(s,o2,R) & in(o1,k1) & in(o2,k1)

& dirin(k1,CD)) identifies all the objects o1 that are sanitized (and by definition accessible by all

subjects) and that are not in the dataset of a permitted read. Any match between a subject s

and object o1 in this expression results in the addition of a system authorization auth(s,o1,R) to

the policy. The conditions of the WASL read rule are, therefore, equivalent to the requirements of

Axiom 6.3.1.

Write authorizations in P:

The first condition in Axiom 6.3.2 that permits a write authorization is N ′(k, j) = true. The WASL

rule permitting subject s to write object o includes the imperative that auth(s,o,R) be specified in

the policy, meeting this condition.

The converse of the second condition of Axiom 6.3.2 specifies that no subject may write to

an object if the subject has an authorization to read any objects in a different, non–sanitized CD.

These disallowed writes match those in the expression -in(o2,CDSan) & ((in(o,k1) & in(o2,k2) &

dirin(k1,CD) & dirin(k2,CD) & -equals(k1,k2)) & auth(s,o2,R)), a condition that yields the re-

quired negative authorization do(u,o,-W); for each u and o1 to which it applies. Having identified

the cases when a write must not be permitted, the absence of this indicator, -do(s,o,-W), is the
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required condition. This logic is included in the WASL write rule as the second mandatory condition

of Axiom 6.3.2.

Both requirements of Axiom 6.3.2 are necessary for a write authorization to be added to P

and are established prior to the addition of and compilation of the WASL write rule, thus preserving

security. In addition, this WASL rule is sufficient for adding write authorizations to the system as

it is the only means of adding auth(s,o,W) statements to P.

6.3.2 WASL Implementation. Policy P is an implementation of a policy enforcing the

principles of the CW model. WASL entities are related to CW as summarized in Table 18. Subjects,

objects, actions, and kinds (reflecting COIs and CDs) and the relationships among them all have

direct correlation with CW model formalisms.

System P has two COIs, COI1 and COI2, with two datasets in each, CD1 and CD2 in

COI1 and CD3 and CD4 in COI2. Sanitized objects are maintained in a separate COI and

dataset, COISan and CDSan, respectively. Figure 21 identifies the WASL CD/COI hierarchy

while Figure 22 identifies objects and their CDs for modeling this system. Relevant code to depicted

elements is provided in the figures but the complete code corresponding to these figures follows.

Figure 21: CD/COI Structure for System P

Figure 22: Object/CD Structure for System P

begin

-- declare fundamental COI and CD kinds

const kind COI; const kind CD;

-- declare COIs and associate them with COI

const kind COI1; const kind COI2;

dirin(COI1, COI); dirin(COI2, COI);

const kind San; dirin(San, COI);
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-- declare CDs and associate them with CD

const kind CD1; const kind CD2;

const kind CD3; const kind CD4;

dirin(CD1, CD); dirin(CD2, CD);

dirin(CD3, CD); dirin(CD4, CD);

dirin(San, CD);

--associate CDs with COIs

dirin(CD1, COI1); dirin(CD2, COI1);

dirin(CD3, COI2); dirin(CD4, COI2);

-- declare objects and associate them with CDs

const object D1; const object D2;

const object D3; const object D4;

const object D5; const object D6;

const object D7; const object D8;

dirin(D1, CD1); dirin(D2, CD1);

dirin(D3, CD2); dirin(D4, CD2);

dirin(D5, CD3); dirin(D6, CD3);

dirin(D7, CD4); dirin(D8, CD4);

const object D9; dirin(D9, San);

end;

There are eight subjects, each with some initially–specified access to different combinations

of objects as shown in Figure 23. Accesses (all read at this point) are defined in WASL using the

do(s,o,R) construct. The code expressing these and the added subjects follows. This code includes

a declaration of the two actions in the system, Read and Write.

Figure 23: Initial Subject Accesses in System P

-- declare subjects

const subject S1; const subject S2;

const subject S3; const subject S4;

const subject S5; const subject S6;

const subject S7; const subject S8;

-- declare actions

const action R; const action W;

-- establish initial accesses

do(S1, D1, R); do(S2, D1, R);

do(S2, D5, R); do(S3, D4, R);

do(S4, D4, R); do(S4, D6, R);

do(S5, D5, R); do(S6, D6, R);

do(S6, D9, R); do(S7, D7, R);

do(S8, D8, R); do(S8, D9, R);
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Compiling the above code with the three WASL rules leads to the following system authoriza-

tions, permissions that satisfy Theorems 6.3.1 and 6.3.2. Thus, P is secure by CW definitions.

auth(S1, D1, R); auth(S1, D2, R); auth(S1, D9, R); auth(S1, D1, W); auth(S1, D2, W);

auth(S2, D1, R); auth(S2, D2, R); auth(S2, D5, R); auth(S2, D6, R); auth(S2, D9, R);

auth(S3, D3, R); auth(S3, D4, R); auth(S3, D9, R); auth(S3, D3, W); auth(S3, D4, W);

auth(S4, D3, R); auth(S4, D4, R); auth(S4, D5, R); auth(S4, D6, R); auth(S4, D9, R);

auth(S5, D5, R); auth(S5, D6, R); auth(S5, D9, R); auth(S5, D5, W); auth(S5, D6, W);

auth(S6, D5, R); auth(S6, D6, R); auth(S6, D9, R); auth(S6, D5, W); auth(S6, D6, W);

auth(S7, D7, R); auth(S7, D8, R); auth(S7, D9, R); auth(S7, D7, W); auth(S7, D8, W);

auth(S8, D7, R); auth(S8, D8, R); auth(S8, D9, R); auth(S8, D7, W); auth(S8, D8, W);

Two WASL rules, one generating system authorizations for each of read and write, are the

enabling mechanisms for the assurance of security. Policy composition for a CW system could

be explored here, but the similarities with that shown in Sections 6.1.1 and 6.2.1 render such a

presentation redundant.

6.4 Conclusion

The key to security enforcement in WASL is the construction of WASL rules and the proper

selection of WASL constructs by the system administrator to express intended accesses for system

subjects. Formal models of BLP, Biba, and CW provide the backdrop for rigorous analysis of WASL

constructs. For these axiomatic systems, WASL is shown to enforce the requirements for sample

policies and, without loss of generality, any policies following the rules and procedures described.

Policy composition includes the combination of two security policies that share a definition of

security. With the addition of capabilities for subjects in one policy to access objects in the other,

the composition is shown to sustain security for the component policies while assuring security for

the composition as defined.
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VII. Conclusion

This research has shown that a WSN operates more securely when a policy management system

regulates accesses of subjects to particular data objects. The security system is even more pow-

erful due to additional flexibility when the policies are managed and distributed independently from

the mechanisms enforcing those policies, authentication, encryption, and other security measures.

WASL is the first policy language to provide a means for implementing just such a system for

WSNs. The merits of the language are identified in Section 7.1 with recommendations for further

study following in Section 7.2

7.1 Contributions

The core of this research is WASL, a language designed to represent security policies for WSNs.

It is fully specified including the semantics of the various constructs that make use of a complete

grammar. This section reviews aspects identified in the statement of purpose (Section 1.3) to identify

the achievement of the stated objectives.

WASL demonstrates three well–studied and fully defined policies as well as hybrid policies

combining the characteristics of those three. Additionally, any selected set of system authorizations

or rules generating system authorizations could be designated to define a desired security policy,

thus demonstrating the versatility of the language.

While not the primary objective of this work, the compression of policy specifications such

that transmission to and storage at a node was shown but is an area addressed further below. The

minimum information required at a node is the set of system authorizations, information easily

extractable from a fully specified security policy.

The compiler for WASL uses statements and rules to generate the complete delineation of

system authorizations as required. The concepts of discretionary and mandatory access control

appear in Biba and BLP policy models, and the WASL construct is shown to be adaptable to the

Chinese Wall model. Role–based authorizations have not been the focus of this work, but constructs

are supported as they parallel those already discussed.

The language capably represents relationships among subjects, among users, and between these

and security/classification levels. Groupings referenced in authorization statements imply the given

authorization applies to every element in the group, simplifying the security administrator’s policy

specification task. Similarly, an association between a security level and an entity grouping applies

the same relationship between that level and any element of the group. By demonstrating the

hybridization of policies, the simultaneous enforcement of multiple partial orders of security levels
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is exemplified. This flexibility adds capability to composition requirements, enabling a security

administrator to superimpose a policy from another network onto the policy of the WSN.

Policy composition is secure when component policies remain unchanged directly and indirectly

with respect to data flow. WASL supports secure composition of a variety of policies whether those

policies have similar or dissimilar security models. A methodology for merging policies whose rules do

not match is developed and demonstrated, with the security of the systems shown to be maintained

in such circumstances.

Because the evaluated policy models are axiomatic systems, proofs of security are straightfor-

ward. These proofs are provided and are necessary for the assurance of security. The proofs apply

equally to policy models in theory, to initial WASL–coded policy specifications, to the compiled

policies, and to compositions of independent policies. They provide the basis for the claim that

WASL policy compilations and compositions maintain security.

7.2 Recommendations for Future Work

This research advocates the distribution of system authorizations, and only system authoriza-

tions, throughout the WSN to manage periodically changing access privileges. While the system

has been demonstrated and its feasibility substantiated, some aspects of its implementation would

benefit from further investigation.

The compiler manages policy compilation and composition, but the compilation run times at

a gateway can become prohibitively long using this JavaTM–based compiler when a large number

of constant substitutions are required. Compiler efficiencies may be identified by using additional

heuristics or through implementation using a declarative language paradigm.

Policies containing a large number of system authorizations can be represented in a sufficiently

compact manner for distribution and storage among and within WSN motes. Efficiency is of the

highest import, however, and the manifest representation can undoubtedly be improved.

Similarly, a table–lookup system at each node to assess a query’s merit is assumed. The

particular mechanism used to accomplish this task has not been addressed. This development should

be performed in conjunction with data compression improvements as it is likely that the latter will

be coupled with the former just as the gateway is coupled with the motes.

Finally, query–routing is a significant issue that must be investigated. The proposed policy–

enforcement approach to security identifies how a node may respond when presented with a query

it is qualified to answer. This research did identify possible responses of a node when it is not the

intended recipient of the query, but did not explore the implications of the various courses of action.

95



Bibliography

AIL05. Madhukar Anand, Zachary Ives, and Insup Lee. Quantifying eavesdropping vulnera-

bility in sensor networks. In Proceedings of the 2nd International Workshop on Data

Management for Sensor Networks, pages 3–9, New York NY, USA, 2005. ACM Press.

AL93. Mart́ın Abadi and Leslie Lamport. Composing specifications. ACM Transactions on

Programming Languages and Systems, 15(1):73–132, 1993.

AMN02. Xuhui Ao, Naftaly H. Minsky, and Thu D. Nguyen. A hierarchical policy specification

language and enforcement mechanism for governing digital enterprises. In POLICY: 3rd

International Workshop on Policies for Distributed Systems and Networks, pages 38–49.

IEEE Computer Society, Jun 2002.

App98. Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge University

Press, New York NY, 1998.

AUJP04. Sasikanth Avancha, Jeffrey Undercoffer, Anupam Joshi, and John Pinkston. Security for

wireless sensor networks. In C. S. Raghavendra, Krishna M. Sivalingam, and Taieb Znati,

editors, Wireless Sensor Networks, chapter 12. Kluwer Academic Publishers, Boston MA,

2004.

BdVS02. Piero Bonatti, Sabrina De Capitani di Vimercati, and Pierangela Samarati. An alge-

bra for composing access control policies. ACM Transactions on Information System

Security, 5(1):1–35, 2002.

BE02. David Braginsky and Deborah Estrin. Rumor routing algorthim for sensor networks. In

Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and

Applications, pages 22–31, New York NY, USA, 2002. ACM Press.

BGS92. John A. Bull, Li Gong, and Karen R. Sollins. Towards security in an open systems

federation. In Proceedings of the Second European Symposium on Research in Computer

Security, pages 3–20, London, UK, 1992. Springer-Verlag.

BGS00. P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world. IEEE Personal

Communications, 7(5):10–15, Oct 2000.

Bib77. K. J. Biba. Integrity considerations for secure computer systems. Technical Report

MTR-3153, MITRE Corp., Bedford MA, April 1977.

Bis03. Matt Bishop. Computer Security—Art and Science. Addison-Wesley, November 2003.

BL75. D. Elliott Bell and Leonard J. LaPadula. Secure computer systems: Unified exposition

and multics interpretation. Technical Report MTR-2997, MITRE Corp., Bedford MA,

July 1975.

96



BN89. David F.C. Brewer and Michael J. Nash. The chinese wall security policy. In Proceedings

of the 1989 IEEE Symposium on Security and Privacy, pages 206–214, May 1989.

BY94. William R. Bevier and William D. Young. A state–based approach to noninterference.

In Proceedings of the Computer Security Foundations Workshop VII, CSFW 7, pages

11–21, June 1994. http://ieeexplore.ieee.org/iel2/986/7619/00315951.pdf.

CC97. Laurence Cholvy and Frédéric Cuppens. Analyzing consistency of security policies. In

18th IEEE Computer Society Symposium on Research in Security and Privacy, 1997.

CKP03. Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Evaluating probabilistic

queries over imprecise data. In Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data, pages 551–562, New York NY, USA, 2003. ACM

Press.

CP03. Haowen Chan and Adrian Perrig. Computer, chapter Security and Privacy in Sensor

Networks, pages 103–105. IEEE Press, October 2003.

Cro07. Crossbow. MICA2 Datasheet. Crossbow Technology Incorporated, 4145 N. First Street,

San Jose CA 95134, 2007. www.xbow.com.

DDH+05. Wenliang Du, Jing Deng, Yunghsiang S. Han, Pramod K. Varshney, Jonathan Katz, and

Aram Khalili. A pairwise key predistribution scheme for wireless sensor networks. ACM

Transactions of Information Systems Security, 8(2):228–258, 2005.

DDLS01. Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The ponder pol-

icy specification language. In Lecture Notes in Computer Science, pages 18–39. Springer–

Verlag, January 2001.

DeT02. J. DeTreville. Binder, a logic–based security language. In Proceedings of the 2002 IEEE

Symposium on Security and Privacy, pages 105–113, 2002. http://ieeexplore.ieee.

org/iel5/7873/21681/01004365.pdf.

DSB04. Chairman DSB. Defense science board study on unmanned aerial vehicles and uninhab-

ited combat air vehicles. Technical report, Office of the Undersecretary of Defense for

Acquisition, Technology, and Logistics, February 2004.

EN03. Eiman Elnahrawy and Badri Nath. Cleaning and querying noisy sensors. In Proceedings

of the 2nd ACM International Conference on Wireless Sensor Networks and Applica-

tions, pages 78–87, New York NY, USA, 2003. ACM Press.

FG95. Riccardo Focardi and Roberto Gorrieri. A classification of security properties for process

algebras. Journal of Computer Security, 3(1):5–34, 1994/1995.

97



FG01. Riccardo Focardi and Roberto Gorrieri, editors. Foundations of Security Analysis and

Design: Tutorial Lectures, volume 2171 of Lecture Notes in Computer Science, chapter

Classification of Security Properties (Part I: Information Flow), pages 331–396. Springer,

Berlin / Heidelberg, 2001.

FSCY96. H. Feinstein, R. Sandhu, E. Coyne, and C. Youman. Role–based access control models.

IEEE Computer, 29(2):38–47, 1996.

GG99. Virgil D. Gligor and Serban I. Gavrila. Application–oriented security policies and their

composition. Lecture Notes in Computer Science, 1550:67–74, 1999.

GGF98. Virgil D. Gligor, Serban I. Gavrila, and David Ferraiolo. On the formal definition of

separation–of–duty policies and their composition. In 19th IEEE Computer Society

Symposium on Research in Security and Privacy, 1998.

GKFS01. S. Gavrila, D. R. Kuhn, D. F. Ferraiolo, and R. Sandhu. Proposed nist standard for

role-based access control. ACM Transactions on Information and Systems Security,

4(3):224–274, 2001.

GLCB03. David Gay, Philip Levis, David Culler, and Eric Brewer. The nesC Language: A Holistic

Approach to Networked Embedded Systems. University of California, Berkeley, and Intel

Research, Berkeley CA, May 2003.

GLvB+03. David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David

Culler. The nesc language: A holistic approach to networked embedded systems, 2003.

GM82. J. A. Gougen and J. Meseguer. Security policies and security models. In Proceedings of

the 1982 Symposium on Privacy and Security, pages 11–20, 1982.

GQ94. Li Gong and Xiaolei Qian. The complexity and composability of secure interoperation.

In Proceedings of the 1994 IEEE Symposium on Security and Privacy, pages 190–200,

1994.

GR97. Rosario Gennaro and Pankaj Rohatgi. How to sign digital streams. In Burt Kaliski,

editor, Advances in Cryptology — Crypto ’97, volume 1294 of Lecture Notes in Computer

Science, pages 180–197. Springer-Verlag, Berlin, 1997.

GS04. Saurabh Ganeriwal and Mani B. Srivastava. Reputation–based framework for high in-

tegrity sensor networks. In Proceedings of the 2nd ACM Workshop on Security of Ad

Hoc and Networks, pages 66–77, New York NY, USA, 2004. ACM Press.

HSW+00. Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister.

System architecture directions for networked sensors. In Proceedings of the Ninth Inter-

98



national Conference on Architectural Support for Programming Languages and Operating

Systems, pages 93–104, New York NY, USA, 2000. ACM Press.

JM92. Q. Shi J.A. McDermid. Secure composition of systems. In Proceedings of the Eighth

Annual Computer Security Applications Conference, pages 112–122, December 1992.

JSS97. Sushil Jajodia, Pierangela Samarati, and V.S. Subrahmanian. A logical language for

expressing authorizations. In Proceedings of the 1997 IEEE Symposium on Security and

Privacy, pages 31–42. IEEE, May 1997. INSPEC Accession Number: 5602909.
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